Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T06:02:04.518Z Has data issue: false hasContentIssue false

On the hydrodynamic and acoustic nature of pressure proper orthogonal decomposition modes in the near field of a compressible jet

Published online by Cambridge University Press:  13 December 2017

Matteo Mancinelli*
Affiliation:
Dipartimento di Ingegneria, Università degli Studi Roma Tre, Via della Vasca Navale 79, 00146 Rome, Italy
Tiziano Pagliaroli
Affiliation:
Dipartimento di Ingegneria, Università degli Studi Niccolò Cusano, Via Don Carlo Gnocchi 3, 00166 Rome, Italy
Roberto Camussi
Affiliation:
Dipartimento di Ingegneria, Università degli Studi Roma Tre, Via della Vasca Navale 79, 00146 Rome, Italy
Thomas Castelain
Affiliation:
Laboratoire de Mécanique des Fluides et d’Acoustique – UMR 5509, École Centrale de Lyon, 36 av. Guy de Collongue, 69134 Ecully CEDEX, France
*
Email address for correspondence: matteo.mancinelli@uniroma3.it

Abstract

In this work an experimental investigation of the near-field pressure of a compressible jet is presented. The proper orthogonal decomposition (POD) of the pressure fluctuations measured by a linear array of microphones is performed in order to provide the streamwise evolution of the jet structure. The wavenumber–frequency spectrum of the space–time pressure fields re-constructed using each POD mode is computed in order to provide the physical interpretation of the mode in terms of hydrodynamic/acoustic nature. Specifically, non-radiating hydrodynamic, radiating acoustic and ‘hybrid’ hydro-acoustic modes are found based on the phase velocity associated with the spectral energy bumps in the wavenumber–frequency domain. Furthermore, the propagation direction in the far field of the radiating POD modes is detected through the cross-correlation with the measured far-field noise. Modes associated with noise emissions from large/fine scale turbulent structures radiating in the downstream/sideline direction in the far field are thus identified.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arndt, R. E. A., Long, D. F. & Glauser, M. N. 1997 The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J. Fluid Mech. 340, 133.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Bonnet, J. P., Cole, D. R., Delville, J., Glauser, M. N. & Ukeiley, L. S. 1994 Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exp. Fluids 17 (5), 307314.CrossRefGoogle Scholar
Cavalieri, A. V. G., Jordan, P., Agarwal, A. & Gervais, Y. 2011 Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18), 44744492.CrossRefGoogle Scholar
Freund, J. B. & Colonius, T. 2009 Turbulence and sound-field POD analysis of a turbulent jet. Intl J. Aeroacoust. 8 (4), 337354.CrossRefGoogle Scholar
Grizzi, S. & Camussi, R. 2012 Wavelet analysis of near-field pressure fluctuations generated by a subsonic jet. J. Fluid Mech. 698, 93124.CrossRefGoogle Scholar
Howes, W. L.1960 Distribution of time-averaged pressure fluctuations along the boundary of a round subsonic jet. Technical Report NASA-TN-D-468. NASA.Google Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.CrossRefGoogle Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 211 (1107), 564587.Google Scholar
Lilley, G. M. 1991 Jet noise classical theory and experiments. Aeroacoust. Flight Vehicles 1, 211289.Google Scholar
Mancinelli, M., Di Marco, A. & Camussi, R. 2017a Multi-variate and conditioned statistics of velocity and wall pressure fluctuations induced by a jet interacting with a flat-plate. J. Fluid Mech. 823, 134165.CrossRefGoogle Scholar
Mancinelli, M., Pagliaroli, T., Di Marco, A., Camussi, R. & Castelain, T. 2017b Wavelet decomposition of hydrodynamic and acoustic pressures in the near field of the jet. J. Fluid Mech. 813, 716749.CrossRefGoogle Scholar
Mancinelli, M., Pagliaroli, T., Di Marco, A., Camussi, R., Castelain, T. & Léon, O.2016 Hydrodynamic and acoustic wavelet-based separation of the near-field pressure of a compressible jet. In 22nd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2016-2864. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Picard, C. & Delville, J. 2000 Pressure velocity coupling in a subsonic round jet. Intl J. Heat Fluid Flow 21 (3), 359364.CrossRefGoogle Scholar
Sasaki, K., Cavalieri, A. V. G., Silvestre, F. J., Jordan, P., Tissot, G. & Biau, D.2017 A framework for closed-loop flow control using the parabolized stability equations. In 23rd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2017-3003. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Suzuki, T. & Colonius, T. 2006 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197226.CrossRefGoogle Scholar
Tam, C. K. W., Golebiowski, M. & Seiner, J. M.1996 On the two components of turbulent mixing noise from supersonic jets. In 2nd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 1996-1716. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Tinney, C. E. & Jordan, P. 2008 The near pressure field of co-axial subsonic jets. J. Fluid Mech. 611, 175204.CrossRefGoogle Scholar
Tropea, C., Yarin, A. L. & Foss, J. F.(Eds) 2007 Springer Handbook of Experimental Fluid Mechanics, vol. 23. Springer Science & Business Media.CrossRefGoogle Scholar