Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T23:55:24.418Z Has data issue: false hasContentIssue false

Optimal sensor placement for artificial swimmers

Published online by Cambridge University Press:  10 December 2019

Siddhartha Verma
Affiliation:
Computational Science and Engineering Laboratory, Clausiusstrasse 33, ETH Zürich,CH-8092, Switzerland Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton,FL33431, USA Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL34946, USA
Costas Papadimitriou
Affiliation:
Department of Mechanical Engineering, University of Thessaly, Pedion Areos, GR-38334Volos, Greece
Nora Lüthen
Affiliation:
Computational Science and Engineering Laboratory, Clausiusstrasse 33, ETH Zürich,CH-8092, Switzerland
Georgios Arampatzis
Affiliation:
Computational Science and Engineering Laboratory, Clausiusstrasse 33, ETH Zürich,CH-8092, Switzerland
Petros Koumoutsakos*
Affiliation:
Computational Science and Engineering Laboratory, Clausiusstrasse 33, ETH Zürich,CH-8092, Switzerland
*
Email address for correspondence: petros@ethz.ch

Abstract

Natural swimmers rely for their survival on sensors that gather information from the environment and guide their actions. The spatial organization of these sensors, such as the visual fish system and lateral line, suggests evolutionary selection, but their optimality remains an open question. Here, we identify sensor configurations that enable swimmers to maximize the information gathered from their surrounding flow field. We examine two-dimensional, self-propelled and stationary swimmers that are exposed to disturbances generated by oscillating, rotating and D-shaped cylinders. We combine simulations of the Navier–Stokes equations with Bayesian experimental design to determine the optimal arrangements of shear and pressure sensors that best identify the locations of the disturbance-generating sources. We find a marked tendency for shear stress sensors to be located in the head and the tail of the swimmer, while they are absent from the midsection. In turn, we find a high density of pressure sensors in the head along with a uniform distribution along the entire body. The resulting optimal sensor arrangements resemble neuromast distributions observed in fish and provide evidence for optimality in sensor distribution for natural swimmers.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulsadda, A. T. & Tan, X. 2013 Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer-metal composite flow sensors. Smart Mater. Struct. 22 (4), 045010.CrossRefGoogle Scholar
Ahrari, A., Lei, H., Sharif, M. A., Deb, K. & Tan, X. 2017 Reliable underwater dipole source characterization in 3D space by an optimally designed artificial lateral line system. Bioinspir. Biomim. 12 (3), 036010.CrossRefGoogle Scholar
Alsalman, M., Colvert, B. & Kanso, E. 2018 Training bioinspired sensors to classify flows. Bioinspir. Biomim. 14 (1), 016009.CrossRefGoogle Scholar
Asadnia, M., Kottapalli, A. G. P., Miao, J., Warkiani, M. E. & Triantafyllou, M. S. 2015 Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena. J. R. Soc. Interface 12 (111), 20150322.CrossRefGoogle ScholarPubMed
Atema, J., Fay, R. R., Popper, A. N. & Tavolga, W. N. 1988 Sensory Biology of Aquatic Animals. Springer.CrossRefGoogle Scholar
Blaxter, J. H. S. & Fuiman, L. A. 1989 Function of the free neuromasts of marine teleost larvae. In The Mechanosensory Lateral Line (ed. Coombs, S., Görner, P. & Münz, H.), pp. 481499. Springer.CrossRefGoogle Scholar
Bleckmann, H. & Zelick, R. 2009 Lateral line system of fish. Integr. Zool. 4 (1), 1325.CrossRefGoogle Scholar
Bouffanais, R., Weymouth, G. D. & Yue, D. K. P. 2011 Hydrodynamic object recognition using pressure sensing. Proc. Math. Phys. Engng Sci. 467 (2125), 1938.CrossRefGoogle Scholar
von Campenhausen, C., Riess, I. & Weissert, R. 1981 Detection of stationary objects by the blind Cave FishAnoptichthys jordani (Characidae). J. Compar. Physiol. 143 (3), 369374.CrossRefGoogle Scholar
Chambers, L. D., Akanyeti, O., Venturelli, R., Ježov, J., Brown, J., Kruusmaa, M., Fiorini, P. & Megill, W. M. 2014 A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow. J. R. Soc. Interface 11 (99), 20140467.CrossRefGoogle Scholar
Colvert, B., Alsalman, M. & Kanso, E. 2018 Classifying vortex wakes using neural networks. Bioinspir. Biomim. 13 (2), 025003.CrossRefGoogle Scholar
Colvert, B. & Kanso, E. 2016 Fishlike rheotaxis. J. Fluid Mech. 793, 656666.CrossRefGoogle Scholar
Coombs, S. & Braun, C. B. 2003 Information Processing by the Lateral Line System, pp. 122138. Springer.Google Scholar
Coombs, S., Hastings, M. & Finneran, J. 1996 Modeling and measuring lateral line excitation patterns to changing dipole source locations. J. Compar. Physiol. A 178 (3), 359371.Google Scholar
Coombs, S., Janssen, J. & Webb, J. F. 1988 Diversity of lateral line systems: evolutionary and functional considerations. In Sensory Biology of Aquatic Animals, pp. 553593. Springer.CrossRefGoogle Scholar
Coombs, S. & Montgomery, J. C. 1999 The Enigmatic Lateral Line System. pp. 319362. Springer.Google Scholar
Coombs, S. & Netten, S. V. 2005 The hydrodynamics and structural mechanics of the lateral line system. In Fish Biomechanics, Fish Physiology, vol. 23, pp. 103139. Academic Press.CrossRefGoogle Scholar
Coquerelle, M. & Cottet, G.-H. 2008 A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (21), 91219137.CrossRefGoogle Scholar
Ćurčić-Blake, B. & van Netten, S. M. 2006 Source location encoding in the fish lateral line canal. J. Expl Biol. 209 (8), 15481559.CrossRefGoogle Scholar
Dagamseh, A., Wiegerink, R., Lammerink, T. & Krijnen, G. 2013 Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors. J. R. Soc. Interface 10 (83), 20130162.CrossRefGoogle Scholar
Denton, E. J. & Gray, J. A. B. 1988 Mechanical Factors in the Excitation of the Lateral Lines of Fishes, pp. 595617. Springer.Google Scholar
DeVries, L., Lagor, F. D., Lei, H., Tan, X. & Paley, D. A. 2015 Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line. Bioinspir. Biomim. 10 (2), 025002.CrossRefGoogle Scholar
Dijkgraaf, S. 1963 The functioning and significance of the lateral-line organs. Biol. Rev. 38 (1), 51105.CrossRefGoogle Scholar
Engelmann, J., Hanke, W., Mogdans, J. & Bleckmann, H. 2000 Neurobiology: hydrodynamic stimuli and the fish lateral line. Nature 408 (6808), 5152.CrossRefGoogle Scholar
Fan, Z., Chen, J., Zou, J., Bullen, D., Liu, C. & Delcomyn, F. 2002 Design and fabrication of artificial lateral line flow sensors. J. Micromech. Microengng 12 (5), 655661.CrossRefGoogle Scholar
Fernandez, V. I., Maertens, A., Yaul, F. M., Dahl, J., Lang, J. H. & Triantafyllou, M. S. 2011 Lateral-line-inspired sensor arrays for navigation and object identification. Mar. Technol. Soc. J. 45 (4), 130146.CrossRefGoogle Scholar
Franosch, J. M. P., Hagedorn, H. J. A., Goulet, J., Engelmann, J. & van Hemmen, J. L. 2009 Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys. Rev. Lett. 103, 078102.CrossRefGoogle Scholar
Gazzola, M., Chatelain, P., van Rees, W. M. & Koumoutsakos, P. 2011 Simulations of single and multiple swimmers with non-divergence free deforming geometries. J. Comput. Phys. 230, 70937114.CrossRefGoogle Scholar
Gazzola, M., Van Rees, W. M. & Koumoutsakos, P. 2012 C-start: optimal start of larval fish. J. Fluid Mech. 698, 518.CrossRefGoogle Scholar
Gray, J. 1984 Interaction of sound pressure and particle acceleration in the excitation of the lateral-line neuromasts of sprats. Proc. R. Soc. Lond. B 220 (1220), 299325.Google Scholar
Hara, T. J. 1975 Olfaction in fish. Prog. Neurobiol. 5, 271335.CrossRefGoogle Scholar
Hassan, E. S. 1989 Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In The Mechanosensory Lateral Line (ed. Coombs, S., Görner, P. & Münz, H.), pp. 217227. Springer.CrossRefGoogle Scholar
Hassan, E. S. 1992 Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis. Biol. Cybern. 66 (5), 443452.CrossRefGoogle Scholar
Hoekstra, D. & Janssen, J. 1985 Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environ. Biol. Fish. 12 (2), 111117.CrossRefGoogle Scholar
Huan, X. & Marzouk, Y. M. 2013 Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys. 232 (1), 288317.CrossRefGoogle Scholar
Hudspeth, A. J. & Corey, D. P. 1977 Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl Acad. Sci. USA 74 (6), 24072411.CrossRefGoogle ScholarPubMed
Ježov, J., Akanyeti, O., Chambers, L. D. & Kruusmaa, M. 2012 Sensing oscillations in unsteady flow for better robotic swimming efficiency. In 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 9196. Institute of Electrical and Electronics Engineers (IEEE).CrossRefGoogle Scholar
Kanter, M. J. & Coombs, S. 2003 Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J. Expl Biol. 206 (1), 5970.CrossRefGoogle Scholar
Kottapalli, A. G. P., Asadnia, M., Miao, J. M., Barbastathis, G. & Triantafyllou, M. S. 2012 A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing. Smart Mater. Struct. 21 (11), 115030.CrossRefGoogle Scholar
Kottapalli, A. G. P., Asadnia, M., Miao, J. M. & Triantafyllou, M. S. 2013 Electrospun nanofibrils encapsulated in hydrogel cupula for biomimetic MEMS flow sensor development. In 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 2528. Institute of Electrical and Electronics Engineers (IEEE).CrossRefGoogle Scholar
Kottapalli, A. G. P., Bora, M., Sengupta, D., Miao, J. & Triantafyllou, M. S. 2018 Hydrogel-CNT biomimetic cilia for flow sensing. In 2018 IEEE SENSORS, pp. 14. Institute of Electrical and Electronics Engineers (IEEE).Google Scholar
Koumoutsakos, P. & Leonard, A. 1995 High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 138.CrossRefGoogle Scholar
Kramer, D. L. & McLaughlin, R. L. 2001 The behavioral ecology of intermittent locomotion. Am. Zool. 41 (2), 137153.Google Scholar
Kroese, A. B. & Schellart, N. A. 1992 Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. J. Neurophysiol. 68 (6), 22122221.CrossRefGoogle Scholar
Kruusmaa, M., Fiorini, P., Megill, W., de Vittorio, M., Akanyeti, O., Visentin, F., Chambers, L., El Daou, H., Fiazza, M., Ježov, J. et al. 2014 FILOSE for Svenning: a flow sensing bioinspired robot. IEEE Robot. Autom. Mag. 21 (3), 5162.CrossRefGoogle Scholar
Ladich, F. & Bass, A. H. 2003 Underwater Sound Generation and Acoustic Reception in Fishes with Some Notes on Frogs, pp. 173193. Springer.Google Scholar
Liao, J. C. 2006 The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J. Expl Biol. 209 (20), 40774090.CrossRefGoogle Scholar
Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003 Fish exploiting vortices decrease muscle activity. Science 302, 15661569.CrossRefGoogle Scholar
Montgomery, J. C. & Coombs, S. 1998 Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator. J. Expl Biol. 201 (1), 91102.Google Scholar
Montgomery, J. C., Coombs, S. & Baker, C. F. 2001 The mechanosensory lateral line system of the hypogean form of astyanax fasciatus. Environ. Biol. Fishes 62 (1), 8796.CrossRefGoogle Scholar
Ó Maoiléidigh, D., Nicola, E. M. & Hudspeth, A. J. 2012 The diverse effects of mechanical loading on active hair bundles. Proc. Natl Acad. Sci. USA 109 (6), 19431948.CrossRefGoogle Scholar
Papadimitriou, C. 2004 Optimal sensor placement methodology for parametric identification of structural systems. J. Sound Vib. 278 (4), 923947.CrossRefGoogle Scholar
Papadimitriou, C. & Lombaert, G. 2012 The effect of prediction error correlation on optimal sensor placement in structural dynamics. Mech. Syst. Signal Process. 28, 105127.CrossRefGoogle Scholar
Partridge, B. L. & Pitcher, T. J. 1980 The sensory basis of fish schools: relative roles of lateral line and vision. J. Compar. Physiol. 135 (4), 315325.CrossRefGoogle Scholar
de Perera, T. B. 2004 Fish can encode order in their spatial map. Proc. R. Soc. Lond. B 271 (1553), 21312134.CrossRefGoogle Scholar
Pitcher, T. J., Partridge, B. L. & Wardle, C. S. 1976 A blind fish can school. Science 194 (4268), 963965.CrossRefGoogle Scholar
Rapo, M. A., Jiang, H., Grosenbaugh, M. A. & Coombs, S. 2009 Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still water. J. Expl Biol. 212 (10), 14941505.CrossRefGoogle ScholarPubMed
Ren, Z. & Mohseni, K. 2012 A model of the lateral line of fish for vortex sensing. Bioinspi. Biomim. 7 (3), 036016.CrossRefGoogle Scholar
Ristroph, L., Liao, J. C. & Zhang, J. 2015 Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish. Phys. Rev. Lett. 114, 018102.CrossRefGoogle Scholar
Rossinelli, D., Hejazialhosseini, B., van Rees, W. M., Gazzola, M., Bergdorf, M. & Koumoutsakos, P. 2015 MRAG-I2D: multi-resolution adapted grids for remeshed vortex methods on multicore architectures. J. Comput. Phys. 288, 118.CrossRefGoogle Scholar
Ryan, K. J. 2003 Estimating expected information gains for experimental designs with application to the random fatigue-limit model. J. Comput. Graph. Stat. 12 (3), 585603.CrossRefGoogle Scholar
Sapède, D., Gompel, N., Dambly-Chaudière, C. & Ghysen, A. 2002 Cell migration in the postembryonic development of the fish lateral line. Development 129 (3), 605615.Google ScholarPubMed
Satou, M., Takeuchi, H.-A., Nishii, J., Tanabe, M., Kitamura, S., Okumoto, N. & Iwata, M. 1994 Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus nerka). J. Compar. Physiol. A 174 (5), 539549.Google Scholar
Schwartz, E. 1974 Lateral-Line Mechano-Receptors in Fishes and Amphibians. pp. 257278. Springer.Google Scholar
Simoen, E., Papadimitriou, C. & Lombaert, G. 2013 On prediction error correlation in Bayesian model updating. J. Sound Vib. 332 (18), 41364152.CrossRefGoogle Scholar
Strokina, N., Kämäräinen, J., Tuhtan, J. A., Fuentes-Pérez, J. F. & Kruusmaa, M. 2016 Joint estimation of bulk flow velocity and angle using a lateral line probe. IEEE Trans. Instrum. Meas. 65 (3), 601613.CrossRefGoogle Scholar
Sutterlin, A. M. & Waddy, S. 1975 Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J. Fish. Res. Board Can. 32 (12), 24412446.CrossRefGoogle Scholar
Tao, J. & Yu, X. 2012 Hair flow sensors: from bio-inspiration to bio-mimicking – a review. Smart Mater. Struct. 21 (11), 113001.CrossRefGoogle Scholar
Triantafyllou, M. S., Weymouth, G. D. & Miao, J. 2016 Biomimetic survival hydrodynamics and flow sensing. Annu. Rev. Fluid Mech. 48 (1), 124.CrossRefGoogle Scholar
Valentinčič, T. 2004 Taste and Olfactory Stimuli and Behavior in Fishes, pp. 90108. Springer.Google Scholar
Van Trump, W. J. & McHenry, M. J. 2008 The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J. Expl Biol. 211 (13), 21052115.CrossRefGoogle Scholar
Venturelli, R., Akanyeti, O., Visentin, F., Ježov, J., Chambers, L. D., Toming, G., Brown, J., Kruusmaa, M., Megill, W. M. & Fiorini, P. 2012 Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows. Bioinspir. Biomim. 7 (3), 036004.CrossRefGoogle ScholarPubMed
Verma, S., Hadjidoukas, P., Wirth, P. & Koumoutsakos, P. 2017 Multi-objective optimization of artificial swimmers. In 2017 IEEE Congress on Evolutionary Computation (CEC). Institute of Electrical and Electronics Engineers (IEEE).Google Scholar
Webb, J. F. 2014 Lateral Line Morphology and Development and Implications for the Ontogeny of Flow Sensing in Fishes, pp. 247270. Springer.Google Scholar
Weihs, D. 1974 Energetic advantages of burst swimming of fish. J. Theor. Biol. 48 (1), 215229.CrossRefGoogle ScholarPubMed
Windsor, S. P., Tan, D. & Montgomery, J. C. 2008 Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus). J. Expl Biol. 211 (18), 29502959.CrossRefGoogle Scholar
Xu, Y. & Mohseni, K. 2017 A pressure sensory system inspired by the fish lateral line: hydrodynamic force estimation and wall detection. IEEE J. Ocean. Engng 42 (3), 532543.CrossRefGoogle Scholar
Yang, Y., Chen, J., Engel, J., Pandya, S., Chen, N., Tucker, C., Coombs, S., Jones, D. L. & Liu, C. 2006 Distant touch hydrodynamic imaging with an artificial lateral line. Proc. Natl Acad. Sci. USA 103 (50), 1889118895.CrossRefGoogle Scholar
Yang, Y., Nguyen, N., Chen, N., Lockwood, M., Tucker, C., Hu, H., Bleckmann, H., Liu, C. & Jones, D. L. 2010 Artificial lateral line with biomimetic neuromasts to emulate fish sensing. Bioinspir. Biomim. 5 (1), 016001.CrossRefGoogle Scholar
Yen, W., Sierra, D. M. & Guo, J. 2018 Controlling a robotic fish to swim along a wall using hydrodynamic pressure feedback. IEEE J. Ocean. Engng 43 (2), 369380.CrossRefGoogle Scholar

Verma et al. supplementary movie 1

A larva-shaped swimmer detecting disturbances generated by a rotating cylinder.

Download Verma et al. supplementary movie 1(Video)
Video 8.9 MB

Verma et al. supplementary movie 2

An adult-shaped swimmer detecting an oscillating cylinder.

Download Verma et al. supplementary movie 2(Video)
Video 8.2 MB

Verma et al. supplementary movie 3

Vorticity field around a static larva in the presence of a horizontally oscillating cylinder.

Download Verma et al. supplementary movie 3(Video)
Video 2.7 MB

Verma et al. supplementary movie 4

Vorticity field around a static larva in the wake of a D-shaped__cylinder.

Download Verma et al. supplementary movie 4(Video)
Video 5.3 MB