Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T23:18:44.521Z Has data issue: false hasContentIssue false

Resonance oscillations of a drop (bubble) in a vibrating fluid

Published online by Cambridge University Press:  29 December 2020

D. V. Lyubimov
Affiliation:
Perm State University, 15, Bukireva St, Perm614990, Russia
T. P. Lyubimova*
Affiliation:
Perm State University, 15, Bukireva St, Perm614990, Russia Institute of Continuous Media Mechanics, Ural Branch of RAS, 1, Koroleva St, Perm614013, Russia
A. A. Cherepanov
Affiliation:
Perm State University, 15, Bukireva St, Perm614990, Russia
*
Email address for correspondence: lubimova@psu.ru

Abstract

The paper deals with the resonance oscillations of a drop (bubble) surrounded by a fluid of different density in a container subjected to small amplitude vibrations in zero gravity conditions. The drop size is considered to be large in comparison with both the vibration amplitude and the thickness of viscous Stokes layers. The calculations for parametrically excited oscillations of the drop are carried out in the linear approximation, for inviscid and low viscous media, neglecting compressibility effects. The resonant oscillation is a doublet of neighbouring modes of eigen-oscillations of the drop, for which the sum of frequencies coincides with the frequency of the forced vibrations. This means that the basic state becomes unstable against quasi-periodic oscillations. The finite viscosity implies a finite threshold for the excitation of resonance. On the other hand, the viscosity plays a destabilizing role; at non-zero (even infinitesimal) viscosity the width of the instability frequency range turns out to be greater than in the case of inviscid fluids.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abi Chebel, N., Piedfert, A., Lalanne, B., Dalmazzone, C., Noïk, C., Masbernat, O. & Risso, F. 2019 Interfacial dynamics and rheology of a crude-oil droplet oscillating in water at a high frequency. Langmuir 35 (29), 94419455.CrossRefGoogle Scholar
Asaki, T. J., Thiessen, D. B. & Marston, P. L. 1995 Effect of an insoluble surfactant on capillary oscillations of bubbles in water: observation of a maximum in the damping. Phys. Rev. Lett. 75, 26862689.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1959 The oscillations of viscous liquid glob. Proc. Lond. Math. Sci. 9, 141149.CrossRefGoogle Scholar
Christiansen, B., Alstrom, P. & Levinsen, M. T. 1995 Dissipation and ordering in capillary waves at high aspect ratios. J. Fluid Mech. 291, 323341.CrossRefGoogle Scholar
Edwards, W. S. & Fauve, S. 1993 Parametrically excited quasicrystalline surface waves. Phys. Rev. E 47, 788791.CrossRefGoogle ScholarPubMed
Edwards, W. S. & Fauve, S. 1994 Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123148.CrossRefGoogle Scholar
Faraday, M. 1831 On a peculiar class acoustical figures and on certain forms assumed by a group of particles upon vibrating elastic surface. Phil. Trans. R. Soc. Lond. 121, 299340.Google Scholar
Feng, Z. C. & Leal, L. G. 1995 Translational instability of a bubble undergoing shape oscillations. Phys. Fluids 7, 13251336.CrossRefGoogle Scholar
Kapitsa, P. L. 1951 Dynamical stability of pendulum at oscillating point of suspension. J. Expl Theor. Phys. 21, 588597.Google Scholar
Keene, B. J., Mills, K. C., Kasama, A., McLean, A. & Miller, W. A. 1986 Comparison of surface tension measurements using the levitated droplet method. Metall. Trans. B 17 (1), 159162.CrossRefGoogle Scholar
Kirillov, O. N. 2007 On the stability of nonconservative systems with small dissipation. J. Math. Sci. 145 (5), 323341.CrossRefGoogle Scholar
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.CrossRefGoogle Scholar
Lamb, H. 1881 On the oscillations of a viscous spheroid. Proc. Lond. Math. Sci. 13, 5166.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1976 Mechanics, 3rd edn. Pergamon Press.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon Press.Google Scholar
Leal, G. 1992 Laminar Flow and Convective Transport Processes. Scaling Principles and Asymptotic Analysis. Butterworth-Heineman.Google Scholar
Lyubimov, D. V., Konovalov, V. V., Lyubimova, T. P. & Egry, I. 2011 Small amplitude shape oscillations of a spherical liquid drop with surface viscosity. J. Fluid Mech. 677, 204217.CrossRefGoogle Scholar
Lyubimova, T., Ivantsov, A., Garrabos, Y., Lecoutre, C. & Beysens, D. 2019 Faraday waves on band pattern under zero gravity conditions. Phys. Rev. Fluids 4, 064001.CrossRefGoogle Scholar
Marston, P. L. 1980 Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stress - theory. J. Acoust. Soc. Am. 67, 1526.CrossRefGoogle Scholar
Marston, P. L. & Apfel, R. E. 1980 Quadrupole resonance of drops driven by modulated acoustic radiation pressure. Experimental properties. J. Acoust. Soc. Am. 67, 2737.CrossRefGoogle Scholar
Mei, C. C. & Zhou, X. 1991 Parametric resonance of a spherical bubble. J. Fluid Mech. 229, 2950.CrossRefGoogle Scholar
Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143165.CrossRefGoogle Scholar
Nayfeh, A. H. 1981 Introduction to Perturbation Techniques. John Wiley and Sons.Google Scholar
Plesset, M. W. 1949 The dynamics of cavitation bubbles. Trans. ASME: J. Appl. Mech. 16, 277282.Google Scholar
Przyborowski, M., Hibiya, T., Eguchi, M. & Egry, I. 1995 Surface tension measurement of molten silicon by the oscillating drop method using electromagnetic levitation. J. Cryst. Growth 151 (1–2), 6065.CrossRefGoogle Scholar
Rayleigh, Lord. 1879 The capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.Google Scholar
Rayleigh, Lord. 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34 (200), 9498.CrossRefGoogle Scholar
Reid, W. 1960 The oscillations of a viscous liquid drop. Q. Appl. Maths 18, 8689.CrossRefGoogle Scholar
Schmidt, G. 1975 Parameterregte Schwingungen. Veb Deutcher Verlag der Wissenschaften.Google Scholar
Shao, X., Fredericks, S. A., Saylor, J. R. & Bostwick, J. B. 2020 A method for determining surface tension, viscosity, and elasticity of gels via ultrasonic levitation of gel drops. J. Acoust. Soc. Am. 147 (4), 24882498.CrossRefGoogle ScholarPubMed
Shen, C. L., Xie, W. J. & Wei, B. 2010 Parametric resonance in acoustically levitated water drops. Phys. Lett. A 374, 23012304.CrossRefGoogle Scholar
Stephenson, A. 1908 New type of dynamical stability. Mem. Proc. Manch. Lit. Philos. Soc. 52 (8), 110.Google Scholar
Tian, Y., Holt, R. G. & Apfel, R. E. 1997 Investigation of liquid surface rheology of surfactant solutions by droplet shape oscillations: experiments. J. Colloid Interface Sci. 187 (1), 110.CrossRefGoogle ScholarPubMed
Trinh, E. H., Thiessen, D. B. & Holt, R. G. 1998 Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: experimental results. J. Fluid Mech. 364, 253272.CrossRefGoogle Scholar