Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T14:58:52.946Z Has data issue: false hasContentIssue false

Run-out scaling of granular column collapses on inclined planes

Published online by Cambridge University Press:  09 January 2025

Teng Man
Affiliation:
College of Civil Engineering, Zhejiang University of Technology, 288 Liuhe Rd, Hangzhou, Zhejiang 310023, PR China Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, 600 Dunyu Rd, Hangzhou, Zhejiang 310024, PR China
Herbert E. Huppert
Affiliation:
Institute of Theoretical Geophysics, King's College, University of Cambridge, King's Parade, Cambridge CB2 1ST, UK
Sergio A. Galindo-Torres*
Affiliation:
Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, 600 Dunyu Rd, Hangzhou, Zhejiang 310024, PR China
*
Email address for correspondence: s.torres@westlake.edu.cn

Abstract

Granular column collapse is a simple but important problem to the granular material community, due to its links to dynamics of natural hazards, such as landslides and pyroclastic flows, and many industrial situations, as well as its potential of analysing transient and non-local rheology of granular flows. This article proposes a new dimensionless number to describe the run-out behaviour of granular columns on inclined planes based on both previous experimental data and dimensional analysis. With the assistance of the sphero-polyhedral discrete element method (DEM), we simulate inclined granular column collapses with different initial aspect ratios, particle contact properties and initial solid fractions on inclined planes with different inclination angles ($2.5^{\circ }\unicode{x2013}20.0^{\circ }$) to verify the proposed dimensional analysis. Detailed analyses are further provided for better understanding of the influence of different initial conditions and boundary conditions, and to help unify the description of the run-out scaling of systems with different inclination angles. This work determines the similarity and unity between granular column collapses on inclined planes and those on horizontal planes, and helps investigate the transient rheological behaviour of granular flows, which has direct relevance to various natural and engineering systems.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Marroquín, F., Ramírez-Gómez, Á., González-Montellano, C., Balaam, N., Hanaor, D.A.H., Flores-Johnson, E.A., Gan, Y., Chen, S. & Shen, L. 2013 Experimental and numerical determination of mechanical properties of polygonal wood particles and their flow analysis in silos. Granul. Matt. 15 (6), 811826.CrossRefGoogle Scholar
Bagnold, R.A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc. R. Soc. Lond. A 225 (1160), 4963.Google Scholar
Boonkanokwong, V., Khinast, J.G. & Glasser, B.J. 2021 Scale-up and flow behavior of cohesive granular material in a four-bladed mixer: effect of system and particle size. Adv. Powder Technol. 32 (12), 44814495.CrossRefGoogle Scholar
Böttner, C., Stevenson, C.J., Englert, R., Schönke, M., Pandolpho, B.T., Geersen, J., Feldens, P. & Krastel, S. 2024 Extreme erosion and bulking in a giant submarine gravity flow. Sci. Adv. 10 (34), eadp2584.CrossRefGoogle Scholar
Bougouin, A., Lacaze, L. & Bonometti, T. 2019 Collapse of a liquid-saturated granular column on a horizontal plane. Phys. Rev. Fluids 4, 124306.CrossRefGoogle Scholar
Boyer, F., Guazzelli, É. & Pouliquen, O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107 (18), 188301.CrossRefGoogle ScholarPubMed
Brewster, R., Silbert, L.E., Grest, G.S. & Levine, A.J. 2008 Relationship between interparticle contact lifetimes and rheology in gravity-driven granular flows. Phys. Rev. E 77, 061302.CrossRefGoogle ScholarPubMed
Cabrera, M. & Estrada, N. 2019 Granular column collapse: analysis of grain-size effects. Phys. Rev. E 99, 012905.CrossRefGoogle ScholarPubMed
Calder, E., Cole, P., Dade, W., Druitt, T., Hoblitt, R., Huppert, H., Ritchie, L.J., Sparks, R. & Young, S.R. 1999 Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat. Geophys. Res. Lett. 26, 537540.CrossRefGoogle Scholar
Cerbus, R.T., Brivady, L., Faug, T. & Kellay, H. 2024 Granular scaling approach to landslide runout. Phys. Rev. Lett. 132, 254101.CrossRefGoogle ScholarPubMed
Chen, Q., Li, Y., Thiem, Ø.A., Neshamar, O. & Cuthbertson, A. 2023 Simulation of fallpipe rock dumping utilizing a multi-phase particle-in-cell (MPPIC)-Discrete Element Method (DEM) model. Part I: concepts and formulation. Appl. Ocean Res. 138, 103654.CrossRefGoogle Scholar
Chou, S.H., Yang, S.J. & Hsiau, S.S. 2023 Investigation on the erosion and deposition process of granular collapse flow on an erodible inclined plane. Powder Technol. 414, 118086.CrossRefGoogle Scholar
Chung, Y.C., Kuo, T.C. & Hsiau, S.S. 2022 Effect of various inserts on flow behavior of ${\rm Fe}_2{\rm O}_3$ beads in a three-dimensional silo subjected to cyclic discharge–part I: exploration of transport properties. Powder Technol. 400, 117220.CrossRefGoogle Scholar
Crosta, G.B., Imposimato, S. & Roddeman, D. 2015 Granular flows on erodible and non erodible inclines. Granul. Matt. 17, 667685.CrossRefGoogle Scholar
Fern, E.J. & Soga, K. 2017 Granular column collapse of wet sand. Procedia Engng 175, 1420, proceedings of the 1st International Conference on the Material Point Method (MPM 2017).CrossRefGoogle Scholar
Galindo-Torres, S.A. 2013 A coupled discrete element lattice Boltzmann method for the simulation of fluid–solid interaction with particles of general shapes. Comput. Meth. Appl. Mech. Engng 265, 107119.CrossRefGoogle Scholar
Galindo-Torres, S.A., Alonso-Marroquín, F, Wang, Y.C., Pedroso, D. & Castano, J.D.M. 2009 Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity. Phys. Rev. E 79 (6), 060301.CrossRefGoogle Scholar
Galindo-Torres, S.A. & Pedroso, D.M. 2010 Molecular dynamics simulations of complex-shaped particles using voronoi-based spheropolyhedra. Phys. Rev. E 81 (6), 061303.CrossRefGoogle ScholarPubMed
Galindo-Torres, S.A., Zhang, X. & Krabbenhoft, K. 2018 Micromechanics of liquefaction in granular materials. Phys. Rev. Appl. 10 (6), 064017.CrossRefGoogle Scholar
Ge, Z., Man, T., Huppert, H.E., Hill, K.M. & Galindo-Torres, S.A. 2024 Unifying length-scale-based rheology of dense suspensions. Phys. Rev. Fluids 9, L012302.CrossRefGoogle Scholar
Ikari, H. & Gotoh, H. 2016 SPH-based simulation of granular collapse on an inclined bed. Mech. Res. Commun. 73, 1218.CrossRefGoogle Scholar
Ionescu, I.R., Mangeney, A., Bouchut, F. & Roche, O. 2015 Viscoplastic modeling of granular column collapse with pressure-dependent rheology. J. Non-Newtonian Fluid Mech. 219, 118.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727.CrossRefGoogle ScholarPubMed
Lajeunesse, E., Monnier, J.B. & Homsy, G.M. 2005 Granular slumping on a horizontal surface. Phys. Fluids 17 (10), 103302.CrossRefGoogle Scholar
Lee, C.-H. 2019 Underwater collapse of a loosely packed granular column on an inclined plane: effects of the Darcy number. AIP Adv. 9, 095046.CrossRefGoogle Scholar
Lube, G., Huppert, H.E., Sparks, R.S.J. & Freundt, A. 2005 Collapses of two-dimensional granular columns. Phys. Rev. E 72 (4), 041301.CrossRefGoogle ScholarPubMed
Lube, G., Huppert, H.E., Sparks, R.S.J. & Freundt, A. 2011 Granular column collapses down rough, inclined channels. J. Fluid Mech. 675, 347368.CrossRefGoogle Scholar
Lube, G., Huppert, H.E, Sparks, R.S.J. & Hallworth, M.A. 2004 Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175199.CrossRefGoogle Scholar
Man, T. 2023 Mathematical modeling of pavement gyratory compaction: a perspective on granular-fluid assemblies. Mathematics 11 (9), 2096.CrossRefGoogle Scholar
Man, T., Huppert, H.E., Li, L. & Galindo-Torres, S.A. 2021 a Deposition morphology of granular column collapses. Granul. Matt. 23 (3), 112.CrossRefGoogle Scholar
Man, T., Huppert, H.E., Li, L. & Galindo-Torres, S.A. 2021 b Finite-size analysis of the collapse of dry granular columns. Geophys. Res. Lett. 48 (24), e2021GL096054.CrossRefGoogle Scholar
Man, T., Huppert, H.E., Zhang, Z. & Galindo-Torres, S.A. 2022 Influence of cross-section shape on granular column collapses. Powder Technol. 407, 117591.CrossRefGoogle Scholar
Man, T., Zhang, Z., Huppert, H.E. & Galindo-Torres, S.A. 2023 Axisymmetric column collapses of bi-frictional granular mixtures. J. Fluid Mech. 963, A4.CrossRefGoogle Scholar
Mangeney, A., Heinrich, P. & Roche, R. 2000 Analytical solution for testing debris avalanche numerical models. Pure Appl. Geophys. 157, 10811096.CrossRefGoogle Scholar
Martinez, F., Tamburrino, A., Casis, V. & Ferrer, P. 2022 Segregation effects on flow's mobility and final morphology of axisymmetric granular collapses. Granul. Matt. 24, 101.CrossRefGoogle Scholar
MiDi, G.D.R. 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.CrossRefGoogle Scholar
Ottino, J.M. & Khakhar, D.V. 2000 Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32 (1), 5591.CrossRefGoogle Scholar
Pailha, M., Nicolas, M. & Pouliquen, O. 2008 Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys Fluids 20 (11), 111701.CrossRefGoogle Scholar
Pouliquen, O., Cassar, C., Jop, P., Forterre, Y. & Nicolas, M. 2006 Flow of dense granular material: towards simple constitutive laws. J. Stat. Mech. 2006 (07), P07020.CrossRefGoogle Scholar
Roche, O., Gilbertson, M., Phillips, J.C. & Sparks, R.S.J. 2002 Experiments on deaerating granular flows and implications for pyroclastic flow mobility. Geophys. Res. Lett. 29, 40.CrossRefGoogle Scholar
Roche, O., Montserrat, S., Niño, Y. & Tamburrino, A. 2008 Experimental observations of water-like behavior of initially fluidized, dam break granular flows and their relevance for the propagation of ash-rich pyroclastic flows. J. Geophys. Res. 113, B12203.Google Scholar
Rondon, L., Pouliquen, O. & Aussillous, P. 2011 Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23 (7), 073301.CrossRefGoogle Scholar
Salehizadeh, A.M. & Shafiei, A.R. 2019 Modeling of granular column collapses with $\mu ({I})$ rheology using smoothed particle hydrodynamic method. Granul. Matt. 21 (12), 32.CrossRefGoogle Scholar
Scherer, P.O.J. 2017 Equations of Motion, pp. 289321. Springer.Google Scholar
Staron, L. & Hinch, E.J. 2005 Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 127.CrossRefGoogle Scholar
Staron, L & Hinch, E.J. 2007 The spreading of a granular mass: role of grain properties and initial conditions. Granul. Matt. 9 (3–4), 205.CrossRefGoogle Scholar
Trulsson, M., Andreotti, B. & Claudin, P. 2012 Transition from the viscous to inertial regime in dense suspensions. Phys. Rev. Lett. 109 (11), 118305.CrossRefGoogle ScholarPubMed
Vo, T.-T., Dinh Minh, T., Nguyen, N.H.T., Nguyen, T.-K. & Bui, T.Q. 2024 Scaling behavior of granular columns collapse on erodible-inclined surfaces. Powder Technol. 433, 119274.CrossRefGoogle Scholar
Zhang, C.-G., Yin, Z.-Y., Wu, Z.-X. & Jin, Y.-F. 2018 Influence of particle shape on granular column collapse by three-dimensional DEM. In Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours (ed. A. Zhou, J. Tao, X. Gu & L. Hu), pp. 840–848. Springer.CrossRefGoogle Scholar
Zhang, X., Du, D., Man, T., Ge, Z. & Huppert, H.E. 2024 Particle clogging mechanisms in hyporheic exchange with coupled lattice Boltzmann discrete element simulations. Phys. Fluids 36 (1), 013312.CrossRefGoogle Scholar
Zhang, X., Huang, T., Ge, Z., Man, T. & Huppert, H.E. 2025 Infiltration characteristics of slurries in porous media based on the coupled lattice-Boltzmann discrete element method. Comput. Geotech. 177, 106865.CrossRefGoogle Scholar