Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T21:18:58.228Z Has data issue: false hasContentIssue false

Secondary instabilities in the flow around two circular cylinders in tandem

Published online by Cambridge University Press:  11 February 2010

BRUNO S. CARMO*
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
JULIO R. MENEGHINI
Affiliation:
NDF, Department of Mechanical Engineering, Poli, University of São Paulo, SP, Brazil
SPENCER J. SHERWIN
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
*
Email address for correspondence: bruno.carmo05@imperial.ac.uk

Abstract

Direct stability analysis and numerical simulations have been employed to identify and characterize secondary instabilities in the wake of the flow around two identical circular cylinders in tandem arrangements. The centre-to-centre separation was varied from 1.2 to 10 cylinder diameters. Four distinct regimes were identified and salient cases chosen to represent the different scenarios observed, and for each configuration detailed results are presented and compared to those obtained for a flow around an isolated cylinder. It was observed that the early stages of the wake transition changes significantly if the separation is smaller than the drag inversion spacing. The onset of the three-dimensional instabilities were calculated and the unstable modes are fully described. In addition, we assessed the nonlinear character of the bifurcations and physical mechanisms are proposed to explain the instabilities. The dependence of the critical Reynolds number on the centre-to-centre separation is also discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkley, D., Gomes, M. G. M. & Henderson, R. D. 2002 Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 473, 167190.CrossRefGoogle Scholar
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57 (17), 21602163.CrossRefGoogle ScholarPubMed
Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31 (1), 5664.CrossRefGoogle Scholar
Beaudoin, J. F., Cadot, O., Aider, J. L. & Wesfreid, J. E. 2004 Three-dimensional stationary flow over a backward-facing step. Eur. J. Mech. B-Fluids 23 (1), 147155.CrossRefGoogle Scholar
Biermann, D. & Herrnstein, W. H. Jr, 1933 The interference between struts in various combinations. Tech. Rep. TR 468. NACA.Google Scholar
Billant, P., Brancher, P. & Chomaz, J. M. 1999 Three-dimensional stability of a vortex pair. Phy. Fluids 11 (8), 20692077.CrossRefGoogle Scholar
Blackburn, H. M. & Lopez, J. M. 2003 The onset of three-dimensional standing and modulated travelling waves in a periodically driven cavity flow. J. Fluid Mech. 497, 289317.CrossRefGoogle Scholar
Blackburn, H. M., Marques, F. & Lopez, J. M. 2005 Symmetry breaking of two-dimensional time-periodic wakes. J. Fluid Mech. 522, 395411.CrossRefGoogle Scholar
Brede, M., Eckelmann, H. & Rockwell, D. 1996 On secondary vortices in the cylinder wake. Phys. Fluids 8, 21172124.CrossRefGoogle Scholar
Carmo, B. S. & Meneghini, J. R. 2006 Numerical investigation of the flow around two circular cylinders in tandem. J. Fluids Struct. 22, 979988.CrossRefGoogle Scholar
Carmo, B. S., Sherwin, S. J., Bearman, P. & Willden, R. 2008 Wake transition in the flow around two circular cylinders in staggered arrangements. J. Fluid Mech. 597, 129.CrossRefGoogle Scholar
Deng, J., Ren, A. L., Zou, J. F. & Shao, X. M. 2006 Three-dimensional flow around two circular cylinders in tandem arrangement. Fluid Dyn. Res. 38, 386404.CrossRefGoogle Scholar
Gerrard, J. H. 1966 The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25 (2), 401443.CrossRefGoogle Scholar
Henderson, R. D. 1997 Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65112.CrossRefGoogle Scholar
Igarashi, T. 1981 Characteristics of the flow around two circular cylinders arranged in tandem. Bull. JSME 24 (188), 323331.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Karniadakis, G. E. 1990 Spectral element–Fourier methods for incompressible turbulent flows. Comput. Methods Appl. Mech. Engg 80, 367380.CrossRefGoogle Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phy. 97, 414443.CrossRefGoogle Scholar
Karniadakis, G. E. & Sherwin, S. J. 2005 Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Lagnado, R. R., Phan-Thien, N. & Leal, L. G. 1984 The stability of two-dimensional linear flows. Phys. Fluids 27 (5), 10941101.CrossRefGoogle Scholar
Lasheras, J. C. & Choi, H. 1988 Three-dimensional instability of a plane free shear-layer – an experimental study of the formation and evolution of streamwise vortices. J. Fluid Mech. 189, 5386.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 1998 a Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 1998 b Three-dimensional instabilities in wake transition. Eur. J. Mech. B/Fluids 17 (4), 571586.CrossRefGoogle Scholar
Meneghini, J. R., Saltara, F., Siqueira, C. L. R. & Ferrari, J. A. Jr, 2001 Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. J. Fluids Struct. 15, 327350.CrossRefGoogle Scholar
Mittal, S., Kumar, V. & Raghuvanshi, A. 1997 Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. Intl J. Numer. Methods Fluids 25, 13151344.3.0.CO;2-P>CrossRefGoogle Scholar
Mizushima, J. & Suehiro, N. 2005 Instability and transition of flow past two tandem circular cylinders. Phys. Fluids 17 (10), 104107.CrossRefGoogle Scholar
Oertel, H. (Ed.) 2004 Prandtl's Essentials of Fluid Mechanics, 2nd edn. Springer.CrossRefGoogle Scholar
Papaioannou, G. V., Yue, D. K. P., Triantafyllou, M. S. & Karniadakis, G. E. 2006 Three-dimensionality effects in flow around two tandem cylinders. J. Fluid Mech. 558, 387413.CrossRefGoogle Scholar
Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57 (17), 21572159.CrossRefGoogle Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Bérnard-von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.CrossRefGoogle Scholar
Ryan, K., Thompson, M. C. & Hourigan, K. 2005 Three-dimensional transition in the wake of bluff elongated cylinders. J. Fluid Mech. 538, 129.CrossRefGoogle Scholar
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2003 From spheres to circular cylinders: the stability and flow structures of bluff ring wakes. J. Fluid Mech. 492, 147180.CrossRefGoogle Scholar
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004 From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings. J. Fluid Mech. 506, 4578.CrossRefGoogle Scholar
Slaouti, A. & Stansby, P. K. 1992 Flow around two circular cylinders by the random-vortex method. J. Fluids Struct. 6 (6), 641670.CrossRefGoogle Scholar
Tasaka, Y., Kon, S., Schouveiler, L. & Le Gal, P. 2006 Hysteretic mode exchange in the wake of two circular cylinders in tandem. Phys. Fluids 18 (8), 084104.CrossRefGoogle Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. Ser. A 223, 289343.Google Scholar
Thomas, D. G. & Kraus, K. A. 1964 Interaction of vortex streets. J. Appl. Phys. 35 (12), 34583459.CrossRefGoogle Scholar
Thompson, M. C., Leweke, T. & Williamson, C. H. K. 2001 The physical mechanism of transition in bluff body wakes. J. Fluids Struct. 15, 607616.CrossRefGoogle Scholar
Tuckerman, L. S. & Barkley, D. 2000 Bifurcation analysis for timesteppers. In Numerical methods for bifurcation problems and large-scale dynamical systems (ed. Doedel, E. & Tuckerman, L. S.), IMA Volumes in Mathematics and its Applications, vol. 119, pp. 543556. Springer.Google Scholar
Williamson, C. H. K. 1988 The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 31 (11), 31653168.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 Three-dimensional wake transition. J. Fluid Mech. 328, 345407.CrossRefGoogle Scholar
Zdravkovich, M. M. 1972 Smoke observations of wakes of tandem cylinders at low Reynolds numbers. Aeronaut. J. 76, 108114.CrossRefGoogle Scholar
Zdravkovich, M. M. 1977 Review of flow interference between two circular cylinders in various arrangements. ASME J. Fluids Engng 99, 618633.CrossRefGoogle Scholar
Zdravkovich, M. M. 1987 The effects of interference between circular cylinders in crossflow. J. Fluids Struct. 1 (2), 239261.CrossRefGoogle Scholar