Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T06:45:41.909Z Has data issue: false hasContentIssue false

Self-adaptive preferential flow control using displacing fluid with dispersed polymers in heterogeneous porous media

Published online by Cambridge University Press:  11 November 2020

Chiyu Xie
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, TX78712, USA
Wenhai Lei
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
Matthew T. Balhoff
Affiliation:
Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, TX78712, USA Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX78712, USA
Moran Wang*
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
Shiyi Chen
Affiliation:
Southern University of Science and Technology, Shenzhen518055, PR China State Laboratory of Turbulence and Complex System, Peking University, Beijing100871, PR China
*
Email address for correspondence: mrwang@tsinghua.edu.cn

Abstract

Preferential flow that leads to non-uniform displacement, especially in heterogeneous porous media, is usually unwelcome in most practical processes. We propose a self-adaptive preferential flow control mechanism by using dispersed polymers, which is supported strongly by experimental and numerical evidence. Our experiments are performed on a microchip with heterogeneous porous structures where oil is displaced by dispersed polymer microsphere particles. Even though the size of the particles is much smaller than the pore-throat size, the diversion effect by the dispersed microspheres is still proved. Therefore, the plugging effect is not the major mechanism for preferential flow control by dispersed polymers. The mechanisms are further investigated by pore-scale modelling, which indicates that the dispersed polymers exhibit an adaption ability to pressure and resistance in the porous flow field. In such an intelligent way, the displacing fluid with dispersed polymers smartly controls the preferential flow by inducing pressure fluctuations, and demonstrates better performance in both efficiency and economic aspects than the traditional method by simply increasing the viscosity. These insights can be applied to improve techniques in the field, such as enhanced oil recovery and soil wetting.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulbaki, M., Huh, C., Sepehrnoori, K., Delshad, M. & Varavei, A. 2014 A critical review on use of polymer microgels for conformance control purposes. J. Petrol. Sci. Engng 122, 741753.CrossRefGoogle Scholar
Adler, P. M. & Brenner, H. 1988 Multiphase flow in porous-media. Annu. Rev. Fluid Mech. 20, 3559.Google Scholar
Al Ayesh, A. H., Salazar, R., Farajzadeh, R., Vincent-Bonnieu, S. & Rossen, W. R. 2016 Foam diversion in heterogeneous reservoirs: effect of permeability and injection method. In Proceedings of the SPE Improved Oil Recovery Conference. Society of Petroleum Engineers.Google Scholar
Bai, B., Li, L., Liu, Y., Liu, H., Wang, Z. & You, C. 2007 a Preformed particle gel for conformance control: factors affecting its properties and applications. SPE Res. Eval. Engng 10, 415422.Google Scholar
Bai, B., Liu, Y., Coste, J.-P. & Li, L. 2007 b Preformed particle gel for conformance control: transport mechanism through porous media. SPE Res. Eval. Engng 10, 176184.CrossRefGoogle Scholar
Chen, J.-D. & Wilkinson, D. 1985 Pore-scale viscous fingering in porous media. Phys. Rev. Lett. 55, 18921895.Google ScholarPubMed
Cohen-Addad, S., Höhler, R. & Pitois, O. 2013 Flow in foams and flowing foams. Annu. Rev. Fluid Mech. 45, 241267.CrossRefGoogle Scholar
Cueto-Felgueroso, L. & Juanes, R. 2008 Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys. Rev. Lett. 101, 244504.CrossRefGoogle ScholarPubMed
Dai, C., Liu, Y., Zou, C., You, Q., Yang, S., Zhao, M., Zhao, G., Wu, Y. & Sun, Y. 2017 Investigation on matching relationship between dispersed particle gel (DPG) and reservoir pore-throats for in-depth profile control. Fuel 207, 109120.CrossRefGoogle Scholar
Fraggedakis, D., Pavlidis, M., Dimakopoulos, Y. & Tsamopoulos, J. 2016 On the velocity discontinuity at a critical volume of a bubble rising in a viscoelastic fluid. J. Fluid Mech. 789, 310346.CrossRefGoogle Scholar
Fuerstman, M. J., Garstecki, P. & Whitesides, G. M. 2007 Coding/decoding and reversibility of droplet trains in microfluidic networks. Science 315, 828832.Google ScholarPubMed
Gasperino, D., Baughman, T., Hsieh, H. V., Bell, D. & Weigl, B. H. 2018 Improving lateral flow assay performance using computational modeling. Annu. Rev. Analyt. Chem. 11, 219244.Google ScholarPubMed
Gerritsen, M. G. & Durlofsky, L. J. 2005 Modeling fluid flow in oil reservoirs. Annu. Rev. Fluid Mech. 37, 211238.Google Scholar
Good, S. P., Noone, D. & Bowen, G. 2015 Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175177.CrossRefGoogle ScholarPubMed
Gunther, A. & Jensen, K. F. 2006 Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab on a Chip 6, 14871503.Google ScholarPubMed
Guo, Z. & Zheng, C. 2002 Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11, 366374.Google Scholar
Guo, Z., Zheng, C. & Shi, B. 2011 Force imbalance in lattice Boltzmann equation for two-phase flows. Phys. Rev. E 83, 036707.Google ScholarPubMed
Han, M., Alshehri, A. J., Krinis, D. & Lyngra, S. 2014 State-of-the-art of in-depth fluid diversion technology: enhancing reservoir oil recovery by gel treatments. In Proceedings of the SPE Saudi Arabia Section Technical Symposium and Exhibition. Society of Petroleum Engineers.Google Scholar
Holtzman, R. 2016 Effects of pore-scale disorder on fluid displacement in partially-wettable porous media. Sci. Rep. 6, 36221.CrossRefGoogle ScholarPubMed
Homsy, G. M. 1987 Viscous fingering in porous-media. Annu. Rev. Fluid Mech. 19, 271311.CrossRefGoogle Scholar
Jensen, O. E. & Chernyavsky, I. L. 2019 Blood flow and transport in the human placenta. Annu. Rev. Fluid Mech. 51, 2547.CrossRefGoogle Scholar
Jiang, F. & Tsuji, T. 2017 Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images. Water Resour. Res. 53, 1132.CrossRefGoogle Scholar
Jung, J. C., Zhang, K., Chon, B. H. & Choi, H. J. 2013 Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery. J. Appl. Polym. Sci. 127, 48334839.CrossRefGoogle Scholar
Khan, M. R., Koneshloo, M., Knappett, P. S., Ahmed, K. M., Bostick, B. C., Mailloux, B. J., Mozumder, R. H., Zahid, A., Harvey, C. F. & Van Geen, A., 2016 Megacity pumping and preferential flow threaten groundwater quality. Nat. Commun. 7, 12833.CrossRefGoogle ScholarPubMed
Kim, H., Park, H. & Lee, S. J. 2017 Effective method for drug injection into subcutaneous tissue. Sci. Rep. 7, 9613.CrossRefGoogle ScholarPubMed
Ladd, A. J. C. 1994 Numerical simulations of particulate suspensions via a discretized boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.CrossRefGoogle Scholar
Ladd, A. J. C. & Verberg, R. 2001 Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 11911251.CrossRefGoogle Scholar
Leclaire, S. & Pellerin, N. 2014 Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method. J. Phys. A: Math. Theor. 47, 105501.CrossRefGoogle Scholar
Leclaire, S., Reggio, M. & Trépanier, J.-Y. 2013 Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios. J. Comput. Phys. 246, 318342.CrossRefGoogle Scholar
Lei, W., Liu, T., Xie, C., Yang, H., Wu, T. & Wang, M. 2020 Enhanced oil recovery mechanism and recovery performance of micro-gel particle suspensions by microfluidic experiments. Energy Sci. Engng 8, 986998.CrossRefGoogle Scholar
Lei, W., Xie, C., Wu, T., Wu, X. & Wang, M. 2019 Transport mechanism of deformable micro-gel particle through micropores with mechanical properties characterized by AFM. Sci. Rep. 9, 14531453.CrossRefGoogle ScholarPubMed
Li, S., Lowengrub, J. S., Fontana, J. & Palffy-Muhoray, P. 2009 Control of viscous fingering patterns in a radial Hele-Shaw cell. Phys. Rev. Lett. 102, 174501.CrossRefGoogle Scholar
Li, R. F., Yan, W., Liu, S., Hirasaki, G. & Miller, C. A. 2010 Foam mobility control for surfactant enhanced oil recovery. Soc. Petrol. Engng J. 15, 928942.Google Scholar
Liu, Y. J., Liao, T. Y. & Joseph, D. D. 1995 A two-dimensional cusp at the trailing edge of an air bubble rising in a viscoelastic liquid. J. Fluid Mech. 304, 321342.CrossRefGoogle Scholar
Lou, Q., Guo, Z. & Shi, B. 2013 Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation. Phys. Rev. E 87, 063301.CrossRefGoogle ScholarPubMed
Morrow, N. R. & Mason, G. 2001 Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 6, 321337.CrossRefGoogle Scholar
Olayiwola, S. O. & Dejam, M. 2019 A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel 241, 10451057.CrossRefGoogle Scholar
Payatakes, A. C. 1982 Dynamics of oil ganglia during immiscible displacement in water-wet porous-media. Annu. Rev. Fluid Mech. 14, 365393.CrossRefGoogle Scholar
Pillapakkam, S. B., Singh, P., Blackmore, D. & Aubry, N. 2007 Transient and steady state of a rising bubble in a viscoelastic fluid. J. Fluid Mech. 589, 215252.CrossRefGoogle Scholar
Prakash, M. & Gershenfeld, N. 2007 Microfluidic bubble logic. Science 315, 832835.CrossRefGoogle ScholarPubMed
Ritsema, C. J., Dekker, L. W., Hendrickx, J. & Hamminga, W. 1993 Preferential flow mechanism in a water repellent sandy soil. Water Resour. Res. 29, 21832193.CrossRefGoogle Scholar
Saghafi, H. R., Naderifar, A., Gerami, S. & Emadi, M. A. 2016 Improvement in thermo-chemical stability of nanocomposite preformed particle gels for conformance control in harsh oil reservoir conditions. Can. J. Chem. Engng 94, 18801890.CrossRefGoogle Scholar
Segre, E. & Holtzman, R. 2015 Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Phys. Rev. Lett. 115, 164501.Google Scholar
Semprebon, C., Krüger, T. & Kusumaatmaja, H. 2016 Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles. Phys. Rev. E 93, 033305.CrossRefGoogle ScholarPubMed
Šimůnek, J., Jarvis, N. J., Van Genuchten, M. T. & Gärdenäs, A. 2003 Review and comparison of models for describing non-equilibrium and preferential flow and transport in the Vadose zone. J. Hydrol. 272, 1435.CrossRefGoogle Scholar
Singh, K., Jung, M., Brinkmann, M. & Seemann, R. 2019 Capillary-dominated fluid displacement in porous media. Annu. Rev. Fluid Mech. 51, 429449.CrossRefGoogle Scholar
Stokes, J. P., Weitz, D. A., Gollub, J. P., Dougherty, A., Robbins, M. O., Chaikin, P. M. & Lindsay, H. M. 1986 Interfacial stability of immiscible displacement in a porous medium. Phys. Rev. Lett. 57, 17181721.CrossRefGoogle Scholar
Suleimanov, B. A., Ismailov, F. S. & Veliyev, E. F. 2011 Nanofluid for enhanced oil recovery. J. Petrol. Sci. Engng 78, 431437.CrossRefGoogle Scholar
Sun, X., Zhang, Y., Chen, G. & Gai, Z. 2017 Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies 10, 345.CrossRefGoogle Scholar
Talebian, S. H., Masoudi, R., Tan, I. M. & Zitha, P. L. J. 2014 Foam assisted Co2-Eor: a review of concept, challenges, and future prospects. J. Petrol. Sci. Engng 120, 202215.CrossRefGoogle Scholar
Thomas, S. 2008 Enhanced oil recovery - an overview. Oil Gas Sci. Technol. - Rev. IFP 63, 919.CrossRefGoogle Scholar
Valentine, G. A., Zhang, D. X. & Robinson, B. A. 2002 Modeling complex, nonlinear geological processes. Annu. Rev. Earth Planet. Sci. 30, 3564.CrossRefGoogle Scholar
Wang, D., Cheng, J., Yang, Q., Wenchao, G., Qun, L. & Chen, F. 2000 Viscous-elastic polymer can increase microscale displacement efficiency in cores. In Proceedings of the SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.CrossRefGoogle Scholar
Wang, J., Liu, H.-Q., Wang, Z.-L. & Hou, P.-C. 2012 Experimental investigation on the filtering flow law of pre-gelled particle in porous media. Transp. Porous Med. 94, 6986.CrossRefGoogle Scholar
Wei, B. & Romero-Zer, R. D. 2014 Oil displacement mechanisms of viscoelastic polymers in enhanced oil recovery (EOR): a review. J. Petrol. Explor. Prod. Technol. 4, 113121.CrossRefGoogle Scholar
Wever, D. A. Z., Picchioni, F. & Broekhuis, A. A. 2011 Polymers for enhanced oil recovery: a paradigm for structure-property relationship in aqueous solution. Prog. Polym. Sci. 36, 15581628.CrossRefGoogle Scholar
Wu, X., Xiong, C., Xu, H., Zhang, J., Lu, C., Lu, X., Li, J., Cao, H., Zhang, N., Cui, G., et al. 2015 A novel particle-type polymer and ior/eor property evaluation. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers.CrossRefGoogle Scholar
Wu, Y.-S. & Bai, B. 2008 Modeling Particle Gel Propagation in Porous Media. Society of Petroleum Engineers.CrossRefGoogle Scholar
Xie, C., Lei, W. & Wang, M. 2018 a Lattice Boltzmann model for three-phase viscoelastic fluid flow. Phys. Rev. E 97, 023312.CrossRefGoogle ScholarPubMed
Xie, C., Lv, W. & Wang, M. 2018 b Shear-thinning or shear-thickening fluid for better EOR—a direct pore-scale study. J. Petrol. Sci. Engng 161, 683691.CrossRefGoogle Scholar
Xie, C., Zhang, J., Bertola, V. & Wang, M. 2016 Lattice Boltzmann modeling for multiphase viscoplastic fluid flow. J. Non-Newtonian Fluid Mech. 234, 118128.CrossRefGoogle Scholar
Zaitoun, A., Tabary, R., Rousseau, D., Pichery, T. R., Nouyoux, S., Mallo, P. & Braun, O. 2007 Using Microgels to Shut Off Water in a Gas Storage Well. Society of Petroleum Engineers.CrossRefGoogle Scholar
Zhao, B., MacMinn, C. W., Primkulov, B. K., Chen, Y., Valocchi, A. J., Zhao, J., Kang, Q., Bruning, K., McClure, J. E. & Miller, C. T., 2019 Comprehensive comparison of pore-scale models for multiphase flow in porous media. Proc. Natl Acad. Sci. 116, 1379913806.CrossRefGoogle ScholarPubMed
Zinchenko, A. Z. & Davis, R. H. 2017 Motion of deformable drops through porous media. Annu. Rev. Fluid Mech. 49, 7190.CrossRefGoogle Scholar
Supplementary material: Image

Xie et al. supplementary movie 1

Movie 1 is the dynamic video of FIG.2 (a): DI water flooding in the microfluidic chip.
Download Xie et al. supplementary movie 1(Image)
Image 21.3 MB
Supplementary material: Image

Xie et al. supplementary movie 2

Movie 2 is the dynamic video of FIG.2 (b): dispersed polymer flooding in the microfluidic chip.

Download Xie et al. supplementary movie 2(Image)
Image 31.4 MB
Supplementary material: Image

Xie et al. supplementary movie 3

Movie 3 is the dynamic video of FIG.4 (a): continuous water flooding processes.
Download Xie et al. supplementary movie 3(Image)
Image 10.8 MB
Supplementary material: Image

Xie et al. supplementary movie 4

Movie 4 is the dynamic video of FIG.4 (b): continuous polymer flooding processes.
Download Xie et al. supplementary movie 4(Image)
Image 10.6 MB
Supplementary material: Image

Xie et al. supplementary movie 5

Movie 5 is the dynamic video of FIG.4 (c): dispersed polymer flooding processes.
Download Xie et al. supplementary movie 5(Image)
Image 14.1 MB
Supplementary material: Image

Xie et al. supplementary movie 6

Movie 6 is the dynamic video of FIG.5 (a): the pressure distribution evolution during continuous water flooding.
Download Xie et al. supplementary movie 6(Image)
Image 6.7 MB
Supplementary material: Image

Xie et al. supplementary movie 7

Movie 7 is the dynamic video of FIG.5 (b): the pressure distribution evolution during continuous polymer flooding.
Download Xie et al. supplementary movie 7(Image)
Image 8 MB
Supplementary material: Image

Xie et al. supplementary movie 8

Movie 8 is the dynamic video of FIG.5 (c): the pressure distribution evolution during dispersed polymer flooding.

Download Xie et al. supplementary movie 8(Image)
Image 8.1 MB