Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T23:20:07.486Z Has data issue: false hasContentIssue false

Special solutions to a compact equation for deep-water gravity waves

Published online by Cambridge University Press:  16 October 2012

Francesco Fedele*
Affiliation:
School of Civil and Environmental Engineering & School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Denys Dutykh
Affiliation:
LAMA UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac CEDEX, France
*
Email address for correspondence: fedele@gatech.edu

Abstract

Dyachenko & Zakharov (J. Expl Theor. Phys. Lett., vol. 93, 2011, pp. 701–705) recently derived a compact form of the well-known Zakharov integro-differential equation for the third-order Hamiltonian dynamics of a potential flow of an incompressible, infinitely deep fluid with a free surface. Special travelling wave solutions of this compact equation are numerically constructed using the Petviashvili method. Their stability properties are also investigated. In particular, unstable travelling waves with wedge-type singularities, namely peakons, are numerically discovered. To gain insight into the properties of these singular solutions, we also consider the academic case of a perturbed version of the compact equation, for which analytical peakons with exponential shape are derived. Finally, by means of an accurate Fourier-type spectral scheme it is found that smooth solitary waves appear to collide elastically, suggesting the integrability of the Zakharov equation.

Type
Papers
Copyright
©2012 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablowitz, M. J., Kaup, D. J., Newell, A. C. & Segur, H. 1974 The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Maths 53, 249315.CrossRefGoogle Scholar
Ablowitz, M. J. & Segur, H. 1981 Solitons and the Inverse Scattering Transform. SIAM.CrossRefGoogle Scholar
Boyd, J. P. 2000 Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications.Google Scholar
Camassa, R. & Holm, D. 1993 An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71 (11), 16611664.Google Scholar
Clamond, D. & Grue, J. 2001 A fast method for fully nonlinear water-wave computations. J. Fluid Mech. 447, 337355.CrossRefGoogle Scholar
Drazin, P. G. & Johnson, R. S. 1989 Solitons: An introduction. Cambridge University Press.Google Scholar
Dyachenko, A. I. & Zakharov, V. 1994 Is free-surface hydrodynamics an integrable system? Phys. Lett. A 190 (2), 144148.Google Scholar
Dyachenko, A. I. & Zakharov, V. 1996 Toward an integrable model of deep water. Phys. Lett. A 221 (1–2), 8084.CrossRefGoogle Scholar
Dyachenko, A. I. & Zakharov, V. E. 2011 Compact equation for gravity waves on deep water. J. Expl Theor. Phys. Lett. 93 (12), 701705.Google Scholar
Dyachenko, A. I., Zakharov, V. E. & Kachulin, D. I. 2012 Collision of two breathers at surface of deep water. Arxiv:1201.4808, p. 15.Google Scholar
Dysthe, K. B. 1979 Note on a modification to the nonlinear Schrödinger equation for application to deep water. Proc. R. Soc. Lond. A 369, 105114.Google Scholar
Fedele, F. & Dutykh, D. 2011 Hamiltonian form and solitary waves of the spatial Dysthe equations. J. Expl Theor. Phys. Lett. 94 (12), 840844.Google Scholar
Frigo, M. & Johnson, S. G. 2005 The design and implementation of FFTW3. Proc. IEEE 93 (2), 216231.Google Scholar
Fructus, D., Clamond, D., Kristiansen, O. & Grue, J. 2005 An efficient model for three-dimensional surface wave simulations. Part I. Free space problems. J. Comput. Phys. 205, 665685.Google Scholar
Gramstad, O. & Trulsen, K. 2011 Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth. J. Fluid Mech. 670, 404426.CrossRefGoogle Scholar
Hogan, S. J. 1985 The 4th-order evolution equation for deep-water gravity-capillary waves. Proc. R. Soc. Lond. A 402, 359372.Google Scholar
Krasitskii, V. P. 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 120.Google Scholar
Lakoba, T. I. & Yang, J. 2007 A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity. J. Comput. Phys. 226, 16681692.Google Scholar
Longuet-Higgins, M. S. & Fox, J. H. 1996 Asymptotic theory for the almost-highest solitary wave. J. Fluid Mech. 317, 119.CrossRefGoogle Scholar
Longuet-Higgins, M. S. & Fox, M. J. H. 1977 Theory of the almost-highest wave: the inner solution. J. Fluid Mech. 80, 721741.Google Scholar
Longuet-Higgins, M. S. & Fox, M. J. H. 1978 Theory of the almost-highest wave. Part 2. Matching and analytic extension. J. Fluid Mech. 85, 769786.CrossRefGoogle Scholar
Lorenz, E. N. 1960 Energy and numerical weather prediction. Tellus 12, 364373.Google Scholar
Milewski, P. & Tabak, E. 1999 A pseudospectral procedure for the solution of nonlinear wave equations with examples from free-surface flows. SIAM J. Sci. Comput. 21 (3), 11021114.CrossRefGoogle Scholar
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70 (2), 467521.Google Scholar
Pelinovsky, D. & Stepanyants, Y. A. 2004 Convergence of Petviashvili’s iteration method for numerical approximation of stationary solutions of nonlinear wave equations. SIAM J. Numer. Anal. 42, 11101127.Google Scholar
Petviashvili, V. I. 1976 Equation of an extraordinary soliton. Sov. J. Plasma Phys. 2 (3), 469472.Google Scholar
Seliger, R. L. & Whitham, G. B. 1968 Variational principle in continuous mechanics. Proc. R. Soc. Lond. A 305, 125.Google Scholar
Söderlind, G. 2003 Digital filters in adaptive time stepping. ACM Trans. Math. Softw. 29, 126.Google Scholar
Söderlind, G. & Wang, L. 2006 Adaptive time stepping and computational stability. J. Comput. Appl. Maths 185 (2), 225243.CrossRefGoogle Scholar
Stiassnie, M. 1984 Note on the modified nonlinear Schrödinger equation for deep water waves. Wave Motion 6 (4), 431433.CrossRefGoogle Scholar
Stiassnie, M. & Shemer, L. 1984 On modifications of the Zakharov equation for surface gravity waves. J. Fluid Mech. 143, 4767.Google Scholar
Trefethen, L. N. 2000 Spectral Methods in MatLab. SIAM.CrossRefGoogle Scholar
Trulsen, K. & Dysthe, K. B. 1997 Frequency downshift in three-dimensional wave trains in a deep basin. J. Fluid Mech. 352, 359373.Google Scholar
Vakhitov, N. G. & Kolokolov, A. A. 1973 Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quant. Electron. 16 (7), 783789.CrossRefGoogle Scholar
Verner, J. H. 1978 Explicit Runge–Kutta methods with estimates of the local truncation error. SIAM J. Numer. Anal. 15 (4), 772790.Google Scholar
Whitham, G. B. 1999 Linear and Nonlinear Waves. John Wiley & Sons.Google Scholar
Yang, J. 2010 Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM.Google Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.Google Scholar
Zakharov, V. E. 1999 Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid. Eur. J. Mech. (B/Fluids) 18 (3), 327344.Google Scholar
Zakharov, V. E., Guyenne, P., Pushkarev, A. N. & Dias, F. 2001 Wave turbulence in one-dimensional models. Physica D 153, 573619.Google Scholar
Zakharov, V. E. & Shabat, A. B. 1972 Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 6269.Google Scholar