Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T21:24:14.909Z Has data issue: false hasContentIssue false

Spheroidal droplet deformation, oscillation and breakup in uniform outer flow

Published online by Cambridge University Press:  07 October 2020

N. Rimbert*
Affiliation:
Université de Lorraine CNRS LEMTA, Nancy, F-54000, France
S. Castrillon Escobar
Affiliation:
Université de Lorraine CNRS LEMTA, Nancy, F-54000, France Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint Paul Lez Durance13115, France
R. Meignen
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint Paul Lez Durance13115, France
M. Hadj-Achour
Affiliation:
Université de Lorraine CNRS LEMTA, Nancy, F-54000, France Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint Paul Lez Durance13115, France
M. Gradeck
Affiliation:
Université de Lorraine CNRS LEMTA, Nancy, F-54000, France
*
Email address for correspondence: nicolas.rimbert@univ-lorraine.fr

Abstract

This work is focused on the development of an analytical model for the axisymmetric deformation of droplets with a given velocity lag in an outer flow. This leads either to oscillations around a deformed equilibrium shape or to strong deformations which may ultimately lead to their breakup when the equilibrium shape loses its stability. To obtain an evolution equation for the droplet shape evolution, it is first supposed that the droplet deforms like a spheroid. Then, a balance between kinetic energy of deformation, surface energy creation, external pressure work and viscous dissipation within the droplet is written. This is close to the approach developed in the classical Taylor analogy breakup or droplet deformation and breakup model. The main originality of the present modelling is that pressure work can be computed at any time, assuming an outer potential flow. Pressure is assumed to work on either the whole droplet or only on the forward half of the droplet due to flow separation. Results of this model are then compared with reported droplet oscillation frequencies. For suddenly accelerated droplets, oscillations are present in the liquid–liquid metal case and successfully compared with some new direct numerical simulation results. Comparison is also successful when compared with previous results on droplet oscillating at terminal falling velocity, whether in the liquid–liquid case or for falling raindrop. Lastly, comparisons are made with previously published secondary fragmentation experiments and direct numerical simulations whether in a shock tube or for droplets falling in a cross-flow.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abi Chebel, N., Vejraka, J., Masbernat, O. & Risso, F. 2012 Shape oscillations of an oil drop rising in water: effect of surface contamination. J. Fluid Mech. 702, 533542.CrossRefGoogle Scholar
Appleyard, J. 2013 Computational simulation of freely falling water droplets on graphics processing units. PhD thesis, Cranfield University.Google Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Beard, K. V., Bringi, V. N. & Thurai, M. 2010 A new understanding of raindrop shape. Atmos. Res. 97 (4), 396415.CrossRefGoogle Scholar
Beard, K. V. & Chuang, C. 1987 A new model for the equilibrium shape of raindrops. J. Atmos. Sci. 44 (11), 15091524.2.0.CO;2>CrossRefGoogle Scholar
Becker, E., Hiller, W. J. & Kowalewski, T. A. 1991 Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J. Fluid Mech. 231, 189210.CrossRefGoogle Scholar
Becker, E., Hiller, W. J. & Kowalewski, T. A. 1994 Nonlinear dynamics of viscous droplets. J. Fluid Mech. 258, 191216.CrossRefGoogle Scholar
Benjamin, T. B. 1987 Hamiltonian theory for motions of bubbles in an infinite liquid. J. Fluid Mech. 181, 349379.CrossRefGoogle Scholar
Berthoud, G. 2000 Vapor explosions. Annu. Rev. Fluid Mech. 32 (1), 573611.CrossRefGoogle Scholar
Best, A. C. 1950 Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Q. J. R. Meteorol. Soc. 76 (329), 302311.CrossRefGoogle Scholar
Blanco, A. & Magnaudet, J. 1995 The structure of the axisymmetric high-reynolds number flow around an ellipsoidal bubble of fixed shape. Phys. Fluids 7 (6), 12651274.CrossRefGoogle Scholar
Cao, X.-K., Sun, Z.-G., Li, W.-F., Liu, H.-F. & Yu, Z.-H. 2007 A new breakup regime of liquid drops identified in a continuous and uniform air jet flow. Phys. Fluids 19 (5), 057103.CrossRefGoogle Scholar
Castrillon-Escobar, S. 2016 Instabilité et dispersion de jets de corium liquides: analyse des processus physiques et modélisation dans le logiciel MC3D. PhD thesis, Université de Lorraine.Google Scholar
Chen, X. & Yang, V. 2014 Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions. J. Comput. Phys. 269, 2239.CrossRefGoogle Scholar
Chou, W.-H. & Faeth, G. M. 1998 Temporal properties of secondary drop breakup in the bag breakup regime. Intl J. Multiphase Flow 24 (6), 889912.CrossRefGoogle Scholar
Dai, Z. & Faeth, G. M. 2001 Temporal properties of secondary drop breakup in the multimode breakup regime. Intl J. Multiphase Flow 27 (2), 217236.CrossRefGoogle Scholar
Darboux, G. 1915 Lecons sur la théorie générale des surfaces Tome 2. Gauthier-Villars.Google Scholar
Doisneau, F., Sibra, A., Dupays, J., Murrone, A., Laurent, F. & Massot, M. 2014 Numerical strategy for unsteady two-way coupled polydisperse sprays: application to solid-rocket instabilities. J. Propul. Power 30 (3), 727748.CrossRefGoogle Scholar
El Sawi, M. 1974 Distorted gas bubbles at large reynolds number. J. Fluid Mech. 62 (1), 163183.CrossRefGoogle Scholar
Flock, A. K., Guildenbecher, D. R., Chen, J., Sojka, P. E. & Bauer, H.-J. 2012 Experimental statistics of droplet trajectory and air flow during aerodynamic fragmentation of liquid drops. Intl J. Multiphase Flow 47, 3749.CrossRefGoogle Scholar
Foote, G. B. & Du Toit, P. S. 1969 Terminal velocity of raindrops aloft. J. Appl. Meteorol. 8 (2), 249253.2.0.CO;2>CrossRefGoogle Scholar
Fuchs, N. A. 1964 The Mechanics of Aerosols. Pergamon.Google Scholar
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009 Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41, 065001.CrossRefGoogle Scholar
Gelfand, B. E. 1996 Droplet breakup phenomena in flows with velocity lag. Prog. Energy Combust. Sci. 22 (3), 201265.CrossRefGoogle Scholar
Goodall, F. 1976 Propagation through distorted water drops at 11 GHZ. PhD thesis, University of Bradford.Google Scholar
Guildenbecher, D. R., López-Rivera, C. & Sojka, P. E. 2009 Secondary atomization. Exp. Fluids 46 (3), 371.CrossRefGoogle Scholar
Gunn, R. & Kinzer, G. D. 1949 The terminal velocity of fall for water droplets in stagnant air. J. Meteorol. 6 (4), 243248.2.0.CO;2>CrossRefGoogle Scholar
Han, J. & Tryggvason, G. 1999 Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Phys. Fluids 11 (12), 36503667.CrossRefGoogle Scholar
Hill, M. J. M. 1894 VI. On a spherical vortex. Phil. Trans. R. Soc. Lond. A 185, 213245.Google Scholar
Hsiang, L. P. & Faeth, G. M. 1995 Drop deformation and breakup due to shock wave and steady disturbances. Intl J. Multiphase Flow 21, 545560.CrossRefGoogle Scholar
Ibrahim, E. A., Yang, H. Q. & Przekwas, A. J. 1993 Modeling of spray droplets deformation and breakup. J. Propul. Power 9 (4), 651654.CrossRefGoogle Scholar
Jain, M., Prakash, R. S., Tomar, G. & Ravikrishna, R. V. 2015 Secondary breakup of a drop at moderate Weber numbers. Proc. R. Soc. A 471, 20140930.CrossRefGoogle Scholar
Kendoush, A. A. 2003 The virtual mass of a spherical-cap bubble. Phys. Fluids 15 (9), 27822785.CrossRefGoogle Scholar
Krzeczkowski, S. A. 1980 Measurement of liquid droplet disintegration mechanisms. Intl J. Multiphase Flow 6 (3), 227239.CrossRefGoogle Scholar
Kulkarni, V. & Sojka, P. E. 2014 Bag breakup of low viscosity drops in the presence of a continuous air jet. Phys. Fluids 26 (7), 072103.CrossRefGoogle Scholar
Lalanne, B., Tanguy, S. & Risso, F. 2013 Effect of rising motion on the damped shape oscillations of drops and bubbles. Phys. Fluids 25 (11), 112107.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Legendre, D., Zenit, R. & Velez-Cordero, J. R. 2012 On the deformation of gas bubbles in liquids. Phys. Fluids 24 (4), 043303.CrossRefGoogle Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.CrossRefGoogle Scholar
Miller, C. A. & Scriven, L. E. 1968 The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32 (03), 417435.CrossRefGoogle Scholar
Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics. Courier Corporation.CrossRefGoogle Scholar
Moore, D. W. 1959 The rise of a gas bubble in a viscous liquid. J. Fluid Mech. 6 (1), 113130.CrossRefGoogle Scholar
Moore, D. W. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid Mech. 23 (4), 749766.CrossRefGoogle Scholar
Opfer, L., Roisman, I. V., Venzmer, J., Klostermann, M. & Tropea, C. 2014 Droplet-air collision dynamics: Evolution of the film thickness. Phys. Rev. E 89 (1), 013023.CrossRefGoogle ScholarPubMed
O'Rourke, P. J. & Amsden, A. A. 1987 The TAB method for numerical calculation of spray droplet breakup. Tech. Rep. 872089. Society of Automotive Engineering.CrossRefGoogle Scholar
Parlange, J.-Y. 1969 Spherical cap bubbles with laminar wakes. J. Fluid Mech. 37 (2), 257263.CrossRefGoogle Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Ranger, A. A. & Nicholls, J. A. 1969 Aerodynamic shattering of liquid drops. AIAA J. 7 (2), 285290.Google Scholar
Schmehl, R. 2002 Advanced modeling of droplet deformation and breakup for CFD analysis of mixture preparation. In Proceedings of ILASS Europe Conference, Zaragoza. ILASS – Europe.Google Scholar
Sichani, A. B. & Emami, M. D. 2015 A droplet deformation and breakup model based on virtual work principle. Phys. Fluids 27 (3), 032103.CrossRefGoogle Scholar
Simcik, M., Puncochar, M. & Ruzicka, M. C. 2014 Added mass of a spherical cap body. Chem. Engng Sci. 118, 18.CrossRefGoogle Scholar
Strotos, G., Malgarinos, I., Nikolopoulos, N. & Gavaises, M. 2016 Numerical investigation of aerodynamic droplet breakup in a high temperature gas environment. Fuel 181, 450462.CrossRefGoogle Scholar
Stückrad, B., Hiller, W. J. & Kowalewski, T. A. 1993 Measurement of dynamic surface tension by the oscillating droplet method. Exp. Fluids 15 (4), 332340.CrossRefGoogle Scholar
Theofanous, T. G. 2011 Aerobreakup of newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43, 661690.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5 (9), 697702.CrossRefGoogle Scholar
Winnikow, S. & Chao, B. T. 1966 Droplet motion in purified systems. Phys. Fluids 9 (1), 5061.CrossRefGoogle Scholar
Wolfram Research, Inc. 2014 Mathematica, version 10.0. Wolfram Research, Inc.Google Scholar
Yang, W., Jia, M., Che, Z., Sun, K. & Wang, T. 2017 Transitions of deformation to bag breakup and bag to bag-stamen breakup for droplets subjected to a continuous gas flow. Intl J. Heat Mass Transfer 111, 884894.CrossRefGoogle Scholar
Zhao, H., Liu, H.-F., Xu, J.-L., Li, W.-F. & Lin, K.-F. 2013 Temporal properties of secondary drop breakup in the bag-stamen breakup regime. Phys. Fluids 25 (5), 054102.CrossRefGoogle Scholar