Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T03:59:22.208Z Has data issue: false hasContentIssue false

Stability of a bi-layer free film: simultaneous or individual rupture events?

Published online by Cambridge University Press:  15 July 2015

Peter S. Stewart*
Affiliation:
School of Mathematics and Statistics, University of Glasgow, G12 8QW, UK
Jie Feng
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Laura S. Kimpton
Affiliation:
Mathematical Institute, University of Oxford, OX2 6GG, UK
Ian M. Griffiths
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Mathematical Institute, University of Oxford, OX2 6GG, UK
Howard A. Stone
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: peter.stewart@glasgow.ac.uk

Abstract

We consider the stability of a long free film of liquid composed of two immiscible layers of differing viscosities, where each layer experiences a van der Waals force between its interfaces. We analyse the different ways in which the system can exhibit interfacial instability when the liquid layers are sufficiently thin. For an excess of surfactant on one gas–liquid interface, the coupling between the layers is relatively weak and the instability is manifested as temporally separated rupture events in each layer. Conversely, in the absence of surfactant, the coupling between the layers is much stronger and the instability is manifested as rupture of both layers simultaneously. These features are consistent with recent experimental observations.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. M., Brush, L. N. & Davis, S. H. 2010 Foam mechanics: spontaneous rupture of thinning liquid films with Plateau borders. J. Fluid Mech. 658, 6388.Google Scholar
Bird, J. C., De Ruiter, R., Courbin, L. & Stone, H. A. 2010 Daughter bubble cascades produced by folding of ruptured thin films. Nature 465 (7299), 759762.Google Scholar
Breward, C. J. W. & Howell, P. D. 2002 The drainage of a foam lamella. J. Fluid Mech. 458, 379406.Google Scholar
Brush, L. N. & Davis, S. H. 2005 A new law of thinning in foam dynamics. J. Fluid Mech. 534, 227236.Google Scholar
Cherry, R. S. & Hulle, C. T. 1992 Cell death in the thin films of bursting bubbles. Biotechnol. Prog. 8 (1), 1118.Google Scholar
Craster, R. V. & Matar, O. K. 2000 Surfactant transport on mucus films. J. Fluid Mech. 425, 235258.Google Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.Google Scholar
Davis, M. J., Gratton, M. B. & Davis, S. H. 2010 Suppressing van der Waals driven rupture through shear. J. Fluid Mech. 661, 522539.Google Scholar
Davis, M. J., Stewart, P. S. & Davis, S. H. 2013 Local effect of gravity on foams. J. Fluid Mech. 737, 118.Google Scholar
Debrégeas, G., De Gennes, P.-G. & Brochard-Wyart, F. 1998 The life and death of bare viscous bubbles. Science 279 (5357), 17041707.Google Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69 (3), 865930.Google Scholar
Erneux, T. & Davis, S. H. 1993 Nonlinear rupture of free films. Phys. Fluids 5, 11171121.Google Scholar
Feng, J., Roché, M., Vigolo, D., Arnaudov, L. N., Stoyanov, S. D., Gurkov, T. D., Tsutsumanova, G. G. & Stone, H. A. 2014 Nanoemulsions obtained via bubble bursting at a compound interface. Nat. Phys. 10, 606612.Google Scholar
Fisher, L. S. & Golovin, A. A. 2005 Nonlinear stability analysis of a two-layer thin liquid film: dewetting and autophobic behavior. J. Colloid Interface Sci. 291 (2), 515528.Google Scholar
Fisher, L. S. & Golovin, A. A. 2007 Instability of a two-layer thin liquid film with surfactants: dewetting waves. J. Colloid Interface Sci. 307 (1), 203214.Google Scholar
Fuentes, E., Coe, H., Green, D., de Leeuw, G. & McFiggans, G. 2010 Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos. Meas. Tech. 3 (1), 141162.Google Scholar
Howell, P. D. 1999 The draining of a two-dimensional bubble. J. Engng Maths 35 (3), 251272.Google Scholar
Israelachvili, J. N. 2011 Intermolecular and Surface Forces: Revised Third Edition. Academic.Google Scholar
Kalpathy, S. K., Francis, L. F. & Kumar, S. 2010 Shear-induced suppression of rupture in two-layer thin liquid films. J. Colloid Interface Sci. 348 (1), 271279.Google Scholar
Lhuissier, H. & Villermaux, E. 2012 Bursting bubble aerosols. J. Fluid Mech. 696, 544.Google Scholar
Matar, O. K., Craster, R. V. & Warner, M. R. E. 2002 Surfactant transport on highly viscous surface films. J. Fluid Mech. 466, 85111.Google Scholar
Matsubara, H., Ikeda, N., Takiue, T., Aratono, M. & Bain, C. D. 2003 Interfacial films and wetting behavior of hexadecane on aqueous solutions of dodecyltrimethylammonium bromide. Langmuir 19 (6), 22492253.Google Scholar
Mysels, K. J. & Cox, M. C. 1962 An experimental test of Frankel’s law of film thickness. J. Colloid Sci. 17 (2), 136145.Google Scholar
Neethling, S. J., Lee, H. T. & Grassia, P. 2005 The growth, drainage and breakdown of foams. Colloids Surf. A 263 (1), 184196.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.Google Scholar
Patzer, J. F. & Homsy, G. M. 1975 Hydrodynamic stability of thin spherically concentric fluid shells. J. Colloid Interface Sci. 51 (3), 499508.Google Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2004 Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E 70 (2), 025201.Google Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2005 Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys. 122 (22), 224711.Google Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2006 Evolution of interface patterns of three-dimensional two-layer liquid films. Eur. Phys. Lett. 74 (4), 665671.Google Scholar
Schwartz, L. W. & Princen, H. M. 1987 A theory of extensional viscosity for flowing foams and concentrated emulsions. J. Colloid Interface Sci. 118 (1), 201211.Google Scholar
Schwartz, L. W., Roy, R. V., Eley, R. R. & Petrash, S. 2001 Dewetting patterns in a drying liquid film. J. Colloid Interface Sci. 234 (2), 363374.Google Scholar
Seemann, R., Herminghaus, S. & Jacobs, K. 2001 Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett. 86 (24), 55345537.Google Scholar
Stebe, K. J. & Maldarelli, C. 1994 Remobilizing surfactant retarded fluid particle interfaces: II. Controlling the surface mobility at interfaces of solutions containing surface active components. J. Colloid Interface Sci. 163 (1), 177189.Google Scholar
Stewart, P. S., Waters, S. L. & Jensen, O. E. 2009 Local and global instabilities of flow in a flexible-walled channel. Eur. J. Mech. B 28, 541557.Google Scholar
Vaynblat, D., Lister, J. R. & Witelski, T. P. 2001 Rupture of thin viscous films by van der Waals forces: evolution and self-similarity. Phys. Fluids 13, 11301140.Google Scholar
Ward, M. H. 2011 Interfacial thin films rupture and self-similarity. Phys. Fluids 23 (6), 062105.Google Scholar
Williams, M. B. & Davis, S. H. 1982 Nonlinear theory of film rupture. J. Colloid Interface Sci. 90 (1), 220228.Google Scholar
Witelski, T. P. & Bernoff, A. J. 1999 Stability of self-similar solutions for van der Waals driven thin film rupture. Phys. Fluids 11 (9), 24432445.Google Scholar
Wu, J. 1981 Evidence of sea spray produced by bursting bubbles. Science 212 (4492), 324326.Google Scholar
Zhang, W. W. & Lister, J. R. 1999 Similarity solutions for van der Waals rupture of a thin film on a solid substrate. Phys. Fluids 11, 24542462.Google Scholar
Zhang, Y. L., Matar, O. K. & Craster, R. V. 2003 Analysis of tear film rupture: effect of non-Newtonian rheology. J. Colloid Interface Sci. 262 (1), 130148.Google Scholar