Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T23:05:20.123Z Has data issue: false hasContentIssue false

Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow

Published online by Cambridge University Press:  29 August 2017

Samadhan A. Pawar*
Affiliation:
Indian Institute of Technology Madras, Chennai - 600 036, India
Akshay Seshadri
Affiliation:
Indian Institute of Technology Madras, Chennai - 600 036, India
Vishnu R. Unni
Affiliation:
Indian Institute of Technology Madras, Chennai - 600 036, India
R. I. Sujith
Affiliation:
Indian Institute of Technology Madras, Chennai - 600 036, India
*
Email address for correspondence: samadhanpawar@ymail.com

Abstract

Thermoacoustic instability is the result of a positive coupling between the acoustic field in the duct and the heat release rate fluctuations from the flame. Recently, in several turbulent combustors, it has been observed that the onset of thermoacoustic instability is preceded by intermittent oscillations, which consist of bursts of periodic oscillations amidst regions of aperiodic oscillations. Quantitative analysis of the intermittency route to thermoacoustic instability has been performed hitherto using the pressure oscillations alone. We perform experiments on a laboratory-scale bluff-body-stabilized turbulent combustor with a backward-facing step at the inlet to obtain simultaneous data of acoustic pressure and heat release rate fluctuations. With this, we show that the onset of thermoacoustic instability is a phenomenon of mutual synchronization between the acoustic pressure and the heat release rate signals, thus emphasizing the importance of the coupling between these non-identical oscillators. We demonstrate that the stable operation corresponds to desynchronized aperiodic oscillations, which, with an increase in the mean velocity of the flow, transition to synchronized periodic oscillations. In between these states, there exists a state of intermittent phase synchronized oscillations, wherein the two oscillators are synchronized during the periodic epochs and desynchronized during the aperiodic epochs of their oscillations. Furthermore, we discover two different types of limit cycle oscillations in our system. We notice a significant increase in the linear correlation between the acoustic pressure and the heat release rate oscillations during the transition from a lower-amplitude limit cycle to a higher-amplitude limit cycle. Further, we present a phenomenological model that qualitatively captures all of the dynamical states of synchronization observed in the experiment. Our analysis shows that the times at which vortices that are shed from the inlet step reach the bluff body play a dominant role in determining the behaviour of the limit cycle oscillations.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, H. 1996 Analysis of Observed Chaotic Data. Springer.CrossRefGoogle Scholar
Ananthkrishnan, N., Deo, S. & Culick, F. E. 2005 Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber. Combust. Sci. Technol. 177 (2), 221248.Google Scholar
Balusamy, S., Li, L. K., Han, Z., Juniper, M. P. & Hochgreb, S. 2015 Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Proc. Combust. Inst. 35 (3), 32293236.Google Scholar
Bellows, B., Hreiz, A. & Lieuwen, T. 2008 Nonlinear interactions between forced and self-excited acoustic oscillations in premixed combustor. J. Propul. Power 24 (3), 628631.Google Scholar
Blasius, B., Amit, H. & Lewi, S. 1999 Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354359.Google Scholar
Blekhman, I. I., Landa, P. S. & Rosenblum, M. G. 1995 Synchronization and chaotization in interacting dynamical systems. Appl. Mech. Rev. 48, 733752.CrossRefGoogle Scholar
Blevins, R. D. 1985 The effect of sound on vortex shedding from cylinders. J. Fluid Mech. 161, 217237.Google Scholar
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L. & Zhou, C. S. 2002 The synchronization of chaotic systems. Phys. Rep. 366 (1), 1101.Google Scholar
Bove, I., Boccaletti, S., Bragard, J., Kurths, J. & Mancini, H. 2004 Frequency entrainment of nonautonomous chaotic oscillators. Phys. Rev. E 69 (1), 016208.Google Scholar
Broda, J. C., Seo, S., Santoro, R. J., Shirhattikar, G. & Yang, V. 1998 An experimental study of combustion dynamics of a premixed swirl injector. Proc. Combust. Inst. 27 (2), 18491856.CrossRefGoogle Scholar
Cao, L. 1997 Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110 (1), 4350.Google Scholar
Chakravarthy, S. R., Sivakumar, R. & Shreenivasan, O. J. 2007 Vortex-acoustic lock-on in bluff-body and backward-facing step combustors. Sadhana 32 (1–2), 145154.Google Scholar
Crump, J. E., Schadow, K. C., Yanq, V. & Culick, F. E. C. 1986 Longitudinal combustion instabilities in ramjet engines: identification of acoustic modes. J. Propul. Power 2, 105109.Google Scholar
Culick, F. E. C. 1976 Nonlinear behavior of acoustic waves in combustion chambers – I. Acta Astron. 3 (9), 715734.Google Scholar
Culick, F. E. C. 1994 Some recent results for nonlinear acoustics in combustion chambers. AIAA J. 32 (1), 146169.Google Scholar
Datta, S., Mondal, S., Mukhopadhyay, A., Sanyal, D. & Sen, S. 2009 An investigation of nonlinear dynamics of a thermal pulse combustor. Combust. Theor. Model. 13 (1), 1738.Google Scholar
Dowling, A. P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271290.Google Scholar
Eckmann, J. P., Kamphorst, S. O. & Ruelle, D. 1987 Recurrence plots of dynamical systems. Europhys. Lett. 4 (9), 973977.CrossRefGoogle Scholar
Fraser, A. M. & Swinney, H. L. 1986 Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33 (2), 1134.CrossRefGoogle ScholarPubMed
Fujisaka, H. & Yamada, T. 1983 Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69 (1), 3247.Google Scholar
Gabor, D. 1946 Theory of communication. J. Inst. Electr. Engng 93 (26), 429441.Google Scholar
Gonzalez-Miranda, J. M. 2002 Amplitude envelope synchronization in coupled chaotic oscillators. Phys. Rev. E 65 (3), 036232.Google ScholarPubMed
Gotoda, H., Nikimoto, H., Miyano, T. & Tachibana, S. 2011 Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21, 013124.CrossRefGoogle Scholar
Gotoda, H., Shinoda, Y., Kobayashi, M. & Okuno, Y. 2014 Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 89, 022910.Google Scholar
Green, S. I. 1995 Vortex–structure interaction. In Fluid Vortices, chap. XII, pp. 533574. Kluwer Academic.CrossRefGoogle Scholar
Griffin, O. M. & Hall, M. S. 1991 Review – vortex shedding lock-on and flow control in bluff body wakes. Trans. ASME J. Fluids Engng 113 (4), 526537.Google Scholar
Griffin, O. M. & Ramberg, S. E. 1974 The vortex street wakes of vibrating cylinders. J. Fluid Mech. 66, 553576.CrossRefGoogle Scholar
Guethe, F., Guyot, D., Singla, G., Noiray, N. & Schuermans, B. 2012 Chemiluminescence as diagnostic tool in the development of gas turbines. Appl. Phys. B 107 (3), 619636.Google Scholar
Guethe, F. & Schuermans, B. 2007 Phase-locking in post-processing for pulsating flames. Meas. Sci. Technol. 18 (9), 3036.Google Scholar
Gunnoo, H., Abcha, N. & Ezersky, A. 2016 Frequency lock-in and phase synchronization of vortex shedding behind circular cylinder due to surface waves. Phys. Lett. A 380 (7), 863868.Google Scholar
Heagy, J. F., Carroll, T. L. & Pecora, L. M. 1994 Synchronous chaos in coupled oscillator systems. Phys. Rev. E 50 (3), 1874.Google Scholar
Ikeda, Y., Kojima, J. & Hashimoto, H. 2002 Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame. Proc. Combust. Inst. 29, 14951501.CrossRefGoogle Scholar
Jahnke, C. C. & Culick, F. E. 1994 Application of dynamical systems theory to nonlinear combustion instabilities. J. Propul. Power 10 (4), 508517.Google Scholar
Kabiraj, L., Saurabh, A., Wahi, P. & Sujith, R. I. 2012a Route to chaos for combustion instability in ducted laminar premixed flames. Chaos 22, 023129.Google Scholar
Kabiraj, L. & Sujith, R. I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.Google Scholar
Kabiraj, L., Sujith, R. I. & Wahi, P. 2012b Investigating the dynamics of combustion-driven oscillations leading to lean blowout. Fluid Dyn. Res. 44, 031408.Google Scholar
Kashinath, K., Waugh, I. C. & Juniper, M. P. 2014 Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. J. Fluid Mech. 761, 399430.CrossRefGoogle Scholar
Keller, J. O., Vaneveld, L., Korschelt, D., Hubbard, G. L., Ghoniem, A. F., Daily, J. W. & Oppenheim, A. K. 1982 Mechanism of instabilities in turbulent combustion leading to flashback. AIAA J. 20 (2), 254262.CrossRefGoogle Scholar
Kocarev, L. & Parlitz, U. 1995 General approach for chaotic synchronization with application to communication. Phys. Rev. Lett. 74, 50285031.Google Scholar
Lakshmanan, M. & Senthilkumar, D. V. 2011 Dynamics of Nonlinear Time-delay Systems. Springer.Google Scholar
Lei, S. & Turan, A. 2009 Nonlinear/chaotic behaviour in thermo-acoustic instability. Combust. Theor. Model. 13 (3), 541557.Google Scholar
Leon, G. 2001 Synchronization and rhythmic processes in physiology. Nature 410, 277284.Google Scholar
Lieuwen, T. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. American Institute of Aeronautics and Astronautics.Google Scholar
Lieuwen, T. C. 2002 Experimental investigation of limit cycle oscillations in an unstable gas turbine combustor. J. Propul. Power 18, 6167.Google Scholar
Lieuwen, T. C. 2003a Modeling premixed combustion–acoustic wave interactions: a review. J. Propul. Power 19 (5), 765781.Google Scholar
Lieuwen, T. C. 2003b Statistical characteristics of pressure oscillations in a premixed combustor. J. Sound Vib. 260 (1), 317.Google Scholar
Lieuwen, T. C. 2005 Online combustor stability margin assessment using dynamic pressure data. Trans. ASME: J. Engng Gas Turbines Power 127 (3), 478482.Google Scholar
Macquisten, M. A. & Dowling, A. P. 1993 Low-frequency combustion oscillations in a model afterburner. Combust. Flame 94 (3), 253264.Google Scholar
Marwan, N. 2011 How to avoid potential pitfalls in recurrence plot based data analysis. Intl J. Bifurcation Chaos 21 (04), 10031017.Google Scholar
Marwan, N., Romano, M. C., Thiel, M. & Kurths, J. 2007 Recurrence plots for the analysis of complex systems. Phys. Rep. 438 (5), 237329.Google Scholar
Matveev, K. I. & Culick, F. E. C. 2003 A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 175, 10591083.CrossRefGoogle Scholar
McManus, K. R., Poinsot, T. & Candel, S. M. 1993 A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 16, 129.Google Scholar
Mondal, S., Unni, V. R. & Sujith, R. I. 2017 Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states. J. Fluid Mech. 811, 659681.Google Scholar
Murugesan, M. & Sujith, R. I. 2015a Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability. J. Fluid Mech. 772, 225245.CrossRefGoogle Scholar
Murugesan, M. & Sujith, R. I. 2015b Intermittency in combustion dynamics. In 51st AIAA/SAE/ASEE Joint Propulsion Conference. AIAA Paper 2015-3967.Google Scholar
Nair, V. & Sujith, R. I. 2013 Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Chaos 23, 033136.Google Scholar
Nair, V. & Sujith, R. I. 2014 Multifractality in combustion noise: predicting an impending instability. J. Fluid Mech. 747, 635655.Google Scholar
Nair, V. & Sujith, R. I. 2015 A reduced-order model for the onset of combustion instability: physical mechanisms for intermittency and precursors. Proc. Combust. Inst. 35 (3), 31933200.Google Scholar
Nair, V., Thampi, G., Karuppasamy, S., Gopalan, S. & Sujith, R. I. 2013 Loss of chaos in combustion noise as a precursor for impending instability. Intl J. Spray Combust. Diag. 5, 273290.Google Scholar
Nair, V., Thampi, G. & Sujith, R. I. 2014 Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470487.Google Scholar
Noiray, N. & Schuermans, B. 2012 Theoretical and experimental investigations on damper performance for suppression of thermoacoustic oscillations. J. Sound Vib. 331 (12), 27532763.Google Scholar
Osipov, G. V., Hu, B., Zhou, C., Ivanchenko, M. V. & Kurths, J. 2003 Three types of transitions to phase synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 91 (2), 024101.Google Scholar
Pawar, S. A., Vishnu, R., Vadivukkarasan, M., Panchagnula, M. V. & Sujith, R. I. 2016 Intermittency route to combustion instability in a laboratory spray combustor. Trans. ASME: J. Engng Gas Turbines Power 138 (4), 041505.Google Scholar
Pikovsky, A., Rosenblum, M. & Kurths, J. 2003 Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press.Google Scholar
Poinsot, T. J., Trouve, A. C., Veynante, D. P., Candel, S. M. & Esposito, E. J. 1987 Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265292.Google Scholar
Putnam, A. A. 1971 Combustion-Driven Oscillations in Industry. Elsevier.Google Scholar
Pyragas, K. 1998 Properties of generalized synchronization of chaos. Nonlinear Anal. Model. 3, 129.Google Scholar
Rayleigh, J. S. W. 1878 The explanation of certain acoustic phenomena. Nature 18 (455), 319321.Google Scholar
Rogers, D. E. 1956 A mechanism for high-frequency oscillation in ramjet combustors and afterburners. Jet Propul. 26 (6), 456462.Google Scholar
Romano, M. C., Thiel, M., Kurths, J., Kiss, I. Z. & Hudson, J. L. 2005 Detection of synchronization for non-phase-coherent and non-stationary data. Europhys. Lett. 71 (3), 466.CrossRefGoogle Scholar
Rosenblum, M. G., Pikovsky, A. S. & Kurths, J. 1996 Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76 (11), 1804.Google Scholar
Rosenblum, M. G., Pikovsky, A. S. & Kurths, J. 1997 From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78 (22), 4193.Google Scholar
Roy, R. & Thornburg, K. S. Jr. 1994 Experimental synchronization of chaotic lasers. Phys. Rev. Lett. 72 (13), 20092012.Google Scholar
Rulkov, N. F., Sushchik, M. M., Tsingring, L. S. & Abarbanel, H. D. I. 1995 Generalized synchronition of chaos in directionally coupled chaotic systems. Phys. Rev. E 51 (2), 980.Google Scholar
Schadow, K. C. & Gutmark, E. 1992 Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 18 (2), 117132.Google Scholar
Schinkel, S., Dimigen, O. & Marwan, N. 2008 Selection of recurrence threshold for signal detection. Eur. Phys. J. Spec. Top. 164 (1), 4553.Google Scholar
Schreiber, I. & Marek, M. 1982 Strange attractor in coupled reaction diffusion cells. Physica D 5 (2), 258272.Google Scholar
Seshadri, A., Nair, V. & Sujith, R. I. 2016 A reduced-order deterministic model describing intermittency route to combustion instability. Combust. Theor. Model. 20 (3), 441456.Google Scholar
Shanbhogue, S. J., Husain, S. & Lieuwen, T. 2009 Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci. 35 (1), 98120.Google Scholar
Sivakumar, R. & Chakravarthy, S. R. 2008 Experimental investigation of the acoustic field in a bluff-body combustor. Intl J. Aeroacoust. 7 (3–4), 267299.CrossRefGoogle Scholar
Smith, D. A. & Zukoski, E. E. 1985 Combustion instability sustained by unsteady vortex combustion. In AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference. AIAA Paper 85-1248.Google Scholar
Sterling, J. D. 1993 Nonlinear analysis and modelling of combustion instabilities in a laboratory combustor. Combust. Sci. Technol. 89 (1–4), 167179.Google Scholar
Sterling, J. D. & Zukoski, E. E.1987 Longitudinal mode combustion instabilities in a dump combustor. In 25th Aerospace Sciences Meeting, Reno, NV. AIAA Paper 87-0220.Google Scholar
Strahle, W. C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4 (3), 157176.Google Scholar
Subramanian, P.2011 Dynamical systems approach to the investigation of thermoacoustic instabilities. PhD thesis, Indian Institute of Technology Madras.Google Scholar
Subramanian, P., Mariappan, S., Sujith, R. I. & Wahi, P. 2010 Bifurcation analysis of thermoacoustic instability in a horizontal Rijke tube. Intl J. Spray Combust. Diag. 2 (4), 325355.Google Scholar
Sujith, R. I., Juniper, M. P. & Schmid, P. J. 2016 Non-normality and nonlinearity in thermoacoustic instabilities. Intl J. Spray Combust. Diag. 8 (2), 119146.CrossRefGoogle Scholar
Sungwoo, A., Park, C. & Rubchinsky, L. L. 2011 Detecting the temporal structure of intermittent phase locking. Phys. Rev. E 84, 016201.Google Scholar
Takens, F. 1980 Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick (ed. David, R. & Young, L.-S.), Lecture Notes in Mathematics, vol. 898, pp. 366381. Springer.Google Scholar
Thumuluru, S. K. & Lieuwen, T. 2009 Characterization of acoustically forced swirl flame dynamics. Proc. Combust. Inst. 32 (2), 28932900.Google Scholar
Tony, J., Gopalakrishnan, E. A., Sreelekha, E. & Sujith, R. I. 2015 Detecting deterministic nature of pressure measurements from a turbulent combustor. Phys. Rev. E 92 (6), 062902.Google Scholar
Unni, V. R. & Sujith, R. I. 2015 Multifractal characteristics of combustor dynamics close to lean blowout. J. Fluid Mech. 784, 3050.Google Scholar
Unni, V. R. & Sujith, R. I. 2015 Flame dynamics during intermittency in a turbulent combustor. Proc. Combust. Inst. 36 (3), 37913798.Google Scholar
Venkataraman, K. K., Preston, L. H., Simons, D. W., Lee, B. J., Lee, J. G. & Santavicca, D. A. 1999 Mechanism of combustion instability in a lean premixed dump combustor. J. Propul. Power 15 (6), 909918.Google Scholar
Welch, P. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Acoust. Speech 15 (2), 7073.Google Scholar
Wen, W., Kiss, I. Z. & Hudson, J. L. 2001 Clustering of arrays of chaotic chemical oscillators by feedback and forcing. Phys. Rev. Lett. 86, 4954.Google Scholar
Wilhite, J. M., Dolan, B. J., Kabiraj, L., Gomez, R. V. & Gutmark, E. J. 2016 Analysis of combustion oscillations in a staged MLDI burner using decomposition methods and recurrence analysis. In 54th AIAA Aerospace Sciences Meeting. AIAA SciTech AIAA 2016-1156.Google Scholar
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355381.Google Scholar
Yalçinkaya, T. & Lai, Y. C. 1997 Phase characterization of chaos. Phys. Rev. Lett. 79 (20), 3885.Google Scholar
Yu, H. K., Trouve, A. & Daily, J. W. 1991 Low-frequency pressure oscillations in a model ramjet combustor. J. Fluid Mech. 232, 4772.Google Scholar
Zdravkovich, M. M. 1982 Modification of vortex shedding in the synchronization range. Trans. ASME J. Fluids Engng 104 (4), 513517.Google Scholar
Zinn, B. T. & Lores, M. E. 1971 Application of the Galerkin method in the solution of non-linear axial combustion instability problems in liquid rockets. Combust. Sci. Technol. 4, 269278.Google Scholar