Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T20:33:15.933Z Has data issue: false hasContentIssue false

Three-dimensional vortex structure on a rotating wing

Published online by Cambridge University Press:  06 August 2012

Cem A. Ozen
Affiliation:
Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, USA
D. Rockwell*
Affiliation:
Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, USA
*
Email address for correspondence: dor0@lehigh.edu

Abstract

The three-dimensional structure of the leading-edge vortex on a rotating wing is addressed using a technique of particle image velocimetry. Organized patterns of chordwise-oriented vorticity, which exist within the vortex, arise from the spanwise flow along the surface of the wing, which can attain a velocity the same order as the velocity of the wing at its radius of gyration. These patterns are related to the strength (circulation) and coherence of the tip and root vortices. The associated distributions of spanwise-oriented vorticity along the leading-edge vortex are characterized in relation to the vorticity flux and downwash along the wing.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ansari, S. A., Phillips, N., Stabler, G., Wilkins, P. C., Zbikowski, R. & Knowles, K. 2009 Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles. Exp. Fluids 46, 777798.CrossRefGoogle Scholar
2. Aono, H., Liang, F. & Liu, H. 2008 Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. Expl Biol. 211, 239257.CrossRefGoogle ScholarPubMed
3. Birch, J. M. & Dickinson, M. H. 2001 Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412, 729733.CrossRefGoogle Scholar
4. Birch, J. M., Dickson, W. B. & Dickinson, M. H. 2004 Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J. Expl Biol. 207, 10631072.CrossRefGoogle Scholar
5. Carr, Z., Chao, C. & Ringuette, M. J. 2012 The effect of aspect ratio on the three-dimensional vortex formation of rotating flat-plate wings. AIAA Paper 2012-0912.Google Scholar
6. DeVoria, A., Mahajan, P. & Ringuette, M. J. 2011 Vortex formation and saturation for low-aspect-ratio rotating flat plates at low Reynolds number. AIAA Paper 2011-396.CrossRefGoogle Scholar
7. Eldredge, J. D., Wang, C. J. & Ol, M. 2009 A computational study of a canonical pitch-up, pitch-down wing maneuver. AIAA Paper 3687.Google Scholar
8. Ellington, C. P., van den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
9. Jones, A. R., Ford, C. W. P. & Babinsky, H. 2011 Three-dimensional effects on sliding and waving wings. AIAA J. 48, 633644.Google Scholar
10. Kim, D. & Gharib, M. 2010 Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp. Fluids 49, 329339.CrossRefGoogle Scholar
11. Lentink, D. & Dickinson, M. H. 2009 Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Expl Biol. 212, 27052719.CrossRefGoogle ScholarPubMed
12. Liu, H., Ellington, C. P., Kawachi, K., van den Berg, C. & Willmott, A. P. 1998 A computational fluid dynamic study of hawkmoth hovering. J. Expl Biol. 201, 461477.Google Scholar
13. Lu, Y. & Shen, G. X. 2008 Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing. J. Expl Biol. 211, 12211230.Google Scholar
14. Luo, G. & Sun, M. 2006 The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings. Acta. Mechanica Sin. 21, 531541.CrossRefGoogle Scholar
15. Ozen, C. A. 2012 Unsteady flow structure on rotating and flapping wings. PhD thesis, Lehigh University, Bethlehem, PA.Google Scholar
16. Ozen, C. A. & Rockwell, D. 2011 Vortical structures on a flapping wing. Exp. Fluids 50, 2334.Google Scholar
17. Ozen, C. A. & Rockwell, D. 2012 Flow structure on a rotating plate. Exp. Fluids 52, 207223.CrossRefGoogle Scholar
18. Poelma, C., Dickson, W. B. & Dickinson, M. H. 2006 Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp. Fluids 41, 213225.Google Scholar
19. Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L. & Bomphrey, R. J. 2004 Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Expl Biol. 207, 42994323.Google Scholar
20. van den Berg, C. & Ellington, C. P. 1997 The three-dimensional leading-edge vortex of a hovering model hawkmoth. Phil. Trans. R. Soc. Lond. B. 352, 329340.Google Scholar
21. Willmott, A. P., Ellington, C. P. & Thomas, A. L. R. 1997 Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, manduca sexta. Phil. Trans. R. Soc. Lond. B. 352, 303316.Google Scholar
22. Wojcik, C. J. & Buchholz, J. H. J. 2012 The dynamics of spanwise vorticity on a rotating flat plate. AIAA Paper 2012-0915.CrossRefGoogle Scholar
23. Yilmaz, T. O. & Rockwell, D. 2012 Flow structure on finite-span wings due to pitch-up motion. J. Fluid Mech. 691, 518545.Google Scholar