Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-30T20:57:41.541Z Has data issue: false hasContentIssue false

Upstream-travelling acoustic jet modes as a closure mechanism for screech

Published online by Cambridge University Press:  20 September 2018

Daniel Edgington-Mitchell*
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
Vincent Jaunet
Affiliation:
Département Fluides, Thermique et Combustion, Institut Pprime, CNRS, Université de Poitiers, ENSMA, 86000 Poitiers, France
Peter Jordan
Affiliation:
Département Fluides, Thermique et Combustion, Institut Pprime, CNRS, Université de Poitiers, ENSMA, 86000 Poitiers, France
Aaron Towne
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA
Julio Soria
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
Damon Honnery
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
*
Email address for correspondence: daniel.mitchell@monash.edu

Abstract

Experimental evidence is provided to demonstrate that the upstream-travelling waves in two jets screeching in the A1 and A2 modes are not free-stream acoustic waves, but rather waves with support within the jet. Proper orthogonal decomposition is used to educe the coherent fluctuations associated with jet screech from a set of randomly sampled velocity fields. A streamwise Fourier transform is then used to isolate components with positive and negative phase speeds. The component with negative phase speed is shown, by comparison with a vortex-sheet model, to resemble the upstream-travelling jet wave first studied by Tam & Hu (J. Fluid Mech., vol. 201, 1989, pp. 447–483). It is further demonstrated that screech tones are only observed over the frequency range where this upstream-travelling wave is propagative.

Type
JFM Rapids
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, B., Castelain, T. & Bailly, C. 2013 Broadband shock-associated noise in screeching and non-screeching underexpanded supersonic jets. AIAA J. 51 (3), 665673.Google Scholar
Barone, M. F. & Lele, S. K. 2005 Receptivity of the compressible mixing layer. J. Fluid Mech. 540, 301335.Google Scholar
Berland, J., Bogey, C. & Bailly, C. 2007 Numerical study of screech generation in a planar supersonic jet. Phys. Fluids 19 (7), 075105.Google Scholar
Bogey, C. & Gojon, R. 2017 Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets. J. Fluid Mech. 823, 562591.Google Scholar
Edgington-Mitchell, D., Honnery, D. R. & Soria, J. 2014a The underexpanded jet Mach disk and its associated shear layer. Phys. Fluids 26 (9), 096101.Google Scholar
Edgington-Mitchell, D., Honnery, D. R. & Soria, J. 2015a Multimodal instability in the weakly underexpanded elliptic jet. AIAA J. 53 (9), 27392749.Google Scholar
Edgington-Mitchell, D., Honnery, D. R. & Soria, J. 2015b Staging behaviour in screeching elliptical jets. Intl J. Aeroacoust. 14 (7), 10051024.Google Scholar
Edgington-Mitchell, D., Oberleithner, K., Honnery, D. R. & Soria, J. 2014b Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822847.Google Scholar
Gao, J. & Li, X. 2010 A multi-mode screech frequency prediction formula for circular supersonic jets. J. Acoust. Soc. Am. 127 (3), 12511257.Google Scholar
Jaunet, V., Collin, E. & Delville, J. 2016 POD-Galerkin advection model for convective flow: application to a flapping rectangular supersonic jet. Exp. Fluids 57 (5), 84.Google Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.Google Scholar
Jordan, P., Jaunet, V., Towne, A., Cavalieri, A. V. G., Colonius, T., Schmidt, O. & Agarwal, A. 2018 Jet-flap interaction tones. J. Fluid Mech. 853, 333358.Google Scholar
Lessen, M., Fox, J. & Zien, H. 1965 On the inviscid stability of the laminar mixing of two parallel streams of a compressible fluid. J. Fluid Mech. 23 (2), 355367.Google Scholar
Manning, T. & Lele, S. 2000 A numerical investigation of sound generation in supersonic jet screech. In 21st AIAA Aeroacoustics Conference, Lahaina, HI. American Institute of Aeronautics and Astronautics.Google Scholar
Mercier, B., Castelain, T. & Bailly, C. 2017 Experimental characterisation of the screech feedback loop in underexpanded round jets. J. Fluid Mech. 824, 202229.Google Scholar
Michalke, A.1970 A note on the spatial jet-instability of the compressible cylindrical vortex sheet. Deutsche Forschungs-und Versuchsanstalt für Luft-und Raumfahrt, eV, DLR FB 70-57.Google Scholar
Mitchell, D. M., Honnery, D. R. & Soria, J. 2012 The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren. J. Vis. 15 (4), 333341.Google Scholar
Mitchell, D. M., Honnery, D. R. & Soria, J. 2013 Near-field structure of underexpanded elliptic jets. Exp. Fluids 54 (7), 1578.Google Scholar
Oberleithner, K., Sieber, M., Nayeri, C., Paschereit, C., Petz, C., Hege, H.-C., Noack, B. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.Google Scholar
Powell, A. 1953a The noise of choked jets. J. Acoust. Soc. Am. 25 (3), 385389.Google Scholar
Powell, A. 1953b On the mechanism of choked jet noise. Proc. Phys. Soc. B 66 (12), 1039.Google Scholar
Raman, G. 1997 Cessation of screech in underexpanded jets. J. Fluid Mech. 336, 6990.Google Scholar
Raman, G. 1999 Supersonic jet screech: half-century from Powell to the present. J. Sound Vib. 225 (3), 543571.Google Scholar
Schmidt, O. T., Towne, A., Colonius, T., Cavalieri, A. V., Jordan, P. & Brès, G. A. 2017 Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 11531181.Google Scholar
Shen, H. & Tam, C. K. 2002 Three-dimensional numerical simulation of the jet screech phenomenon. AIAA J. 40 (1), 3341.Google Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. i. Coherent structures. Q. Appl. Maths 45 (3), 561571.Google Scholar
Soria, J. 1996 An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp. Therm. Fluid Sci. 12, 221233.Google Scholar
Tam, C. K. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27 (1), 1743.Google Scholar
Tam, C. K. & Ahuja, K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 6787.Google Scholar
Tam, C. K. & Hu, F. Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.Google Scholar
Tam, C. K., Parrish, S. A. & Viswanathan, K. 2014 Harmonics of jet screech tones. AIAA J. 52 (11), 24712479.Google Scholar
Tan, D., Soria, J., Honnery, D. & Edgington-Mitchell, D. 2017 Novel method for investigating broadband velocity fluctuations in axisymmetric screeching jets. AIAA J. 55 (7), 23212334.Google Scholar
Towne, A., Cavalieri, A. V., Jordan, P., Colonius, T., Schmidt, O., Jaunet, V. & Brès, G. A. 2017 Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 11131152.Google Scholar
Weightman, J. L., Amili, O., Honnery, D., Soria, J. & Edgington-Mitchell, D. 2017 An explanation for the phase lag in supersonic jet impingement. J. Fluid Mech. 815, R1.Google Scholar

Edgington-Mitchell Supplementary Movie 1

Phase reconstruction of screeching jet at NPR = 2.10 decomposed into components with positive and negative phase velocity.

Download Edgington-Mitchell Supplementary Movie 1(Video)
Video 11 MB

Edgington-Mitchell Supplementary Movie 2

Phase reconstruction of screeching jet at NPR = 2.25 decomposed into components with positive and negative phase velocity.

Download Edgington-Mitchell Supplementary Movie 2(Video)
Video 10.8 MB