Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T01:19:23.827Z Has data issue: false hasContentIssue false

Apoptosis of mouse hippocampal cells induced by Taenia crassiceps metacestode factor

Published online by Cambridge University Press:  28 March 2016

N. Zepeda
Affiliation:
Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 70-242
S. Solano
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 4510
N. Copitin
Affiliation:
Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 70-242
J.L. Chávez
Affiliation:
Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 70-242
A.M. Fernández
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 4510
F. García
Affiliation:
Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 70-242
P. Tato
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 4510
J.L. Molinari*
Affiliation:
Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 70-242

Abstract

Seizures, headache, depression and neurological deficits are the signs and symptoms most frequently reported in human neurocysticercosis. However, the cause of the associated learning and memory deficits is unknown. Here, we used Taenia crassiceps infection in mice as a model of human cysticercosis. The effects of T. crassiceps metacestode infection or T. crassiceps metacestode factor (MF) treatment on mouse hippocampal cells were studied; control mice were included. At 45 days after infection or treatment of the mice with MF, all mice were anaesthetized and perfused transcardially with saline followed by phosphate-buffered 10% formalin. Then the brains were carefully removed. Coronal sections stained using several techniques were analysed. Extensive and significant apoptosis was found in the experimental animals, mainly in the dentate gyrus, CA1, CA2, CA3 and neighbouring regions, in comparison with the apparently intact cells from control mice (P < 0.01). These results suggest that neurological deficits, especially the learning and memory deficits, may be generated by extensive apoptosis of hippocampal cells.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arechavaleta, F., Molinari, J.L. & Tato, P. (1998) A Taenia solium metacestode factor nonspecifically inhibits cytokine production. Parasitology Research 84, 117122.CrossRefGoogle ScholarPubMed
Ashwell, G. (1957) Colorimetric analysis of sugars. pp. 7384 in Colowick, S.P. & Kaplan, N.O. (Eds) Methods in enzymology. III. New York, Academic Press.Google Scholar
Ban, E., Milon, G., Prudhomme, N., Fillion, G. & Haour, F. (1991) Receptors interleukin-1 (alpha and beta) in mouse brain: mapping and neuronal localization in hippocampus. Neuroscience 43, 2130.CrossRefGoogle ScholarPubMed
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Christian, K.M., Song, H. & Ming, G.L. (2014) Functions and dysfunctions of adult hippocampal neurogenesis. Annual Review of Neuroscience 37, 243262.Google Scholar
Everhart, M.E., Kuhn, R.E. & Zelmer, D.A. (2004) Intrapopulation dynamics of a wild strain of Taenia crassiceps (WFU) (Cestoda: Taeniidae) in BALB/cJ mice. Journal of Parasitology 90, 7984.Google Scholar
Forlenza, O.V., Filho, A.H., Nobrega, J.P., dos Ramos Machado, L., de Barros, N.G., de Camargo, C.H. & da Silva, M.F. (1997) Psychiatric manifestations of neurocysticercosis: a study of 38 patients from a neurology clinic in Brazil. Journal of Neurology, Neurosurgery, and Psychiatry 62, 612616.Google Scholar
Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. Journal of Cell Biology 119, 493501.CrossRefGoogle ScholarPubMed
Hernández-Mendoza, L., Molinari, J.L., Garrido, E., Cortés, I., Solano, S., Miranda, E. & Tato, P. (2005) The implantation of Taenia solium metacestodes in mice induces down-modulation of T-cell proliferation and cytokine production. Parasitology Research 95, 256265.Google Scholar
Miyazato, T., Furukawa, T., Inouem, M., Niwa, A., Inoue, T. & Shimoda, K. (1977) Electron microscopic observations on the penetration of oncospheres of Hymenolepis nana into the intestine of the mouse. Acta Medica Kinki University 2, 118.Google Scholar
Molinari, J.L., Tato, P. & Valles, Y. (1987) Immunosuppression T-lymphocytes in swine, modulated by Cysticercus cellulosae . Revista Latinoamericana de Microbiología 29, 293300.Google Scholar
Molinari, J.L., Tato, P., Reynoso, O.A. & Cázares, J.M. (1990) Depressive effect of a Taenia solium cysticercus factor on cultured human lymphocytes stimulated with phytohaemagglutinin. Annals of Tropical Medicine and Parasitology 84, 205208.CrossRefGoogle ScholarPubMed
Molinari, J.L., Tato, P., Lara-Aguilera, R. & White, A.C. Jr (1993) Effects of serum from neurocysticercosis patients on the structure and viability of Taenia solium oncospheres. Journal of Parasitology 79, 124129.CrossRefGoogle ScholarPubMed
Morales-Montor, J., Picazo, O., Besedovsky, H., Hernández-Bello, R., López-Griego, L., Becerril-Villanueva, E., Moreno, J., Pavón, L., Nava-Castro, K. & Camacho-Arrollo, I. (2014) Helminth infection alters mood and short-term memory as well as levels of neurotransmitters and cytokines in the mouse hippocampus. Neuroimmunomodulation 21, 195205.CrossRefGoogle ScholarPubMed
Paxinos, G. & Franklin, K.B.J. (2013) The mouse brain in stereotaxic coordinates. 4th edn. Oxford, Elsevier.Google Scholar
Shors, T.J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T. & Gould, E. (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372376.Google Scholar
Solano, S., Zepeda, N., Copitin, N., Fernández, A.M., Tato, P. & Molinari, J.L. (2015) A Taenia crassiceps metacestode factor enhances ovarian follicle atresia and oocyte degeneration in female mice. Journal of Helminthology 89, 4957.CrossRefGoogle ScholarPubMed
Zepeda, N., Copitin, N., Solano, S., González, M., Fernández, A.M., Tato, P. & Molinari, J.L. (2011a) Taenia crassiceps: infections of male mice lead to severe disruption of seminiferous tubule cells and increased apoptosis. Experimental Parasitology 127, 153159.Google Scholar
Zepeda, N., Copitin, N., Solano, S., Fernández, A.M., Tato, P. & Molinari, J.L. (2011b) Taenia crassiceps: a secretion-substance of low molecular weight leads to disruption and apoptosis of seminiferous epithelium cells in male mice. Experimental Parasitology 128, 184191.CrossRefGoogle ScholarPubMed
Zepeda, N., Tirado, R., Copitin, N., Fernández, A.M., Tato, P. & Molinari, J.L. (2015) A Taenia crassiceps factor induces apoptosis of spleen CD4+ T cells and TGF-β and Foxp3 gene expression in mice. Journal of Helminthology 90, 223231.CrossRefGoogle ScholarPubMed
Zhao, C., Deng, W. & Gage, F.H. (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132, 645660.CrossRefGoogle ScholarPubMed