Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T23:01:01.912Z Has data issue: false hasContentIssue false

Consumption of nutritional pellets with Duddingtonia flagrans fungal chlamydospores reduces infective nematode larvae of Haemonchus contortus in faeces of Saint Croix lambs

Published online by Cambridge University Press:  21 November 2016

L. Aguilar-Marcelino
Affiliation:
Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Boulevard Paseo Cuauhnahuac No. 8534, Col. Progreso, Jiutepec, CP 62550, Morelos, México
P. Mendoza-de-Gives*
Affiliation:
Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Boulevard Paseo Cuauhnahuac No. 8534, Col. Progreso, Jiutepec, CP 62550, Morelos, México
G. Torres-Hernández
Affiliation:
Colegio de Postgraduados, Carretera México-Texcoco, Km 36.5, Montecillo, Texcoco, CP 56230, Estado de México, México
M.E. López-Arellano
Affiliation:
Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Boulevard Paseo Cuauhnahuac No. 8534, Col. Progreso, Jiutepec, CP 62550, Morelos, México
C.M. Becerril-Pérez
Affiliation:
Colegio de Postgraduados, Carretera México-Texcoco, Km 36.5, Montecillo, Texcoco, CP 56230, Estado de México, México
A. Orihuela-Trujillo
Affiliation:
Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001. Col. Chamilpa, Cuernavaca, CP 62209, Morelos, México
J.F.J. Torres-Acosta
Affiliation:
FMVZ, CCBA Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, CP 97000, Mérida, México
A. Olmedo-Juárez
Affiliation:
Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Boulevard Paseo Cuauhnahuac No. 8534, Col. Progreso, Jiutepec, CP 62550, Morelos, México

Abstract

Two groups of six Haemonchus contortus infected Saint Croix lambs each received different diets for 11 weeks: control group, commercial food, molasses and lucerne hay; and treated group, nutritional pellets (NPs) containing Duddingtonia flagrans at 2 × 106 chlamydospores/kg body weight (BW), sorghum and lucerne hay. Mean BW gain (BWG), body condition score (BCS) and packed cell volume (PCV) and also eggs/g of faeces (EPG) and recovered L3 were compared using a repeated measures across time model. Groups had similar BWG (control 139.7 ± 0.035 g/day and treated 167.7 ± 0.041 g/day), BCS (control 3.6 ± 0.39 and treated 3.4 ± 0.46) and PCV (control 32.5 ± 1.68% and treated 30.0 ± 1.68%). The mean EPG of the control group was 1215 ± 1040 and in the treated group it was 2097.91 ± 2050. No reduction in larval population was observed during weeks 2 and 3. The greatest larval population reduction in the faeces of treated lambs was observed during the first week (70.5%) and from weeks 6 to 11, with a mean value close to 70% (P < 0.05). In general, both experimental groups showed a similar feed conversion. It was concluded that both diets resulted in similar lamb growth, PCV, BCS and H. contortus EPG. However, NP consumption significantly reduced the H. contortus L3 population in lamb faeces.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arroyo-Balán, L.F., Mendoza-de-Gives, P., López-Arellano, M.E., Liébano-Hernández, E., Vázquez-Prats, V.M., Miranda-Miranda, E. & Ortiz de Montellano-Nolasco, A.M. (2008) Evaluación de un método combinado de control de la hemoncosis ovina bajo condiciones controladas. Técnica Pecuaria México 46, 217223.Google Scholar
Bautista-Garfias, C.R. (2010) Respuesta inmune contra parásitos. pp. 195203 in Gutiérrez-Pabello, J.A. (Ed.) Inmunología veterinaria. Ciudad de México, México, El Manual Moderno.Google Scholar
Behnke, J.M., Chiejina, S.N., Musongong, G.A., Fakae, B.B., Ezeokonkwo, R.C., Nnadi, P.A., Ngongeh, L.A., Jean, E.N. & Wakeling, D. (2006) Naturally ocurring variability in some phenotypic markers and correlates of haemonchotolerance in West African Dwarf goats in subhumid zone of Nigeria. Veterinary Parasitology 141, 107121.CrossRefGoogle Scholar
Casillas-Aguilar, J.A., Mendoza-de-Gives, P., López-Arellano, M.E. & Liébano-Hernández, E. (2008) Evaluation of multinutritional biopellets containing Duddingtonia flagrans chlamydospores for the control of ovine Haemonchus contortus . Annals of the New York Academy of Sciences 1318, 13.Google Scholar
Colvin, A.F., Walkden-Brown, S.W. & Knox, M.R. (2012) Role of host and environment in mediating reduced gastrointestinal nematode infections in sheep due to intensive rotational grazing. Veterinary Parasitology 184, 180192.CrossRefGoogle ScholarPubMed
Fitz-Aranda, J.A., Mendoza-de.Gives, P., Torres-Acosta, J.F.J., Liébano-Hernández, E., López-Arellano, M.E., Sandoval-Castro, C.A. & Quiroz-Romero, H. (2015) Duddingtonia flagrans chlamydospores in nutritional pellets: effect of storage time and conditions on the trapping ability against Haemonchus contortus . Journal of Helminthology 89, 1318.Google Scholar
Gamble, H.R. & Zajac, A.M. (1992) Resistance of St. Croix lambs to Haemonchus contortus in experimentally and naturally acquired infections. Veterinary Parasitology 41, 211225.Google Scholar
Herrera, H.J.G. & García, A.C. (2010) Bioestadística en Ciencias Veterinarias: Procedimientos de análisis de datos con SAS. pp. 139168. Madrid, España, Universidad Complutense, Área.Google Scholar
Hoste, H.H., Sotiraki, S. & Torres-Acosta, J.F.J. (2011) Control of endoparasitic nematode infections in goats. Veterinary Clinics of North American Food Animal Practice 27, 163173.CrossRefGoogle ScholarPubMed
Knox, D. (2011) Proteases in blood-feeding nematodes and their potential as vaccine candidates. Advances in Experimental and Medicine and Biology 712, 155176.Google Scholar
Liébano-Hernández, E., López-Arellano, M.E., Mendoza-de-Gives, P. & Aguilar-Marcelino, L. (2011) Manual de Diagnóstico para la identificación de larvas de nematodos gastrointestinales en rumiantes. Manual Especial no. 2. pp. 1–48. Ciudad de Jiutepec, Morelos, México, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias.Google Scholar
Llerandi-Juárez, R.D. & Mendoza-de-Gives, P. (1998) Resistance of chlamydospores of nematophagous fungi to the digestive processes of sheep in Mexico. Journal of Helminthology 72, 155158.Google Scholar
Mendoza-de-Gives, P. & Torres-Acosta, J.F.J. (2012) Biotechnological use of fungi in the control of ruminant parasitic nematodes. pp. 389408 in Paz, A. & Árias-Vázquez, M.S. (Eds) Fungi: types, environmental impact and role in diseases. Hauppauge, New York, Nova Science Publishers.Google Scholar
Mendoza-de-Gives, P., Zapata-Nieto, C., Hernández, E.L., López-Arellano, M.E., Rodríguez, D.H. & Garduño, G.R. (2006) Biological control of gastrointestinal parasitic nematodes using Duddingtonia flagrans in sheep under natural conditions in Mexico. Annals of the New York Academy of Sciences 1081, 355359.CrossRefGoogle ScholarPubMed
Mendoza-de-Gives, P., López-Arellano, M.E., Liébano-Hernández, E. & Aguilar-Marcelino, L. (2012) Plant extracts: a potential tool for controlling animal parasitic nematodes. In Ishwaran, N. (Ed.) Biosphere. Slavka Krautzeka Rijeka, Croatia, In Tech.Google Scholar
Miller, J.E. & Horohov, D.W. (2006) Immunological aspects of nematode parasite control in sheep. Journal of Animal Science 84, 124132.Google Scholar
Ojeda-Robertos, N.F., Mendoza-de-Gives, P., Torres-Acosta, J.F.J., Rodríguez-Vivas, R.I. & Aguilar-Caballero, A.J. (2005) Evaluating the effectiveness of a Mexican strain of Duddingtonia flagrans as a biological control agent against gastrointestinal nematodes in goat faeces. Journal of Helminthology 79, 151157.CrossRefGoogle ScholarPubMed
Ojeda-Robertos, N.F., Torres-Acosta, J.F.J, Aguilar-Caballero, A.J., Ayala-Burgos, A., Cob-Galera, L.A., Sandoval-Castro, C.A., Barrientos-Medina, R.C. & Mendoza-de-Gives, P. (2008) Assessing the efficacy of Duddingtonia flagrans chlamydospores per gram of faeces to control Haemonchus contortus larvae. Veterinary Parasitology 158, 329335.CrossRefGoogle ScholarPubMed
Ojeda-Robertos, N.F., Torres-Acosta, J.F.J., Ayala-Burgos, A.J., Sandoval-Castro, C.A., Valero-Coss, R.O. & Mendoza-de-Gives, P. (2010) Digestibility of Duddingtonia flagrans chlamydospores in ruminants: in vitro and in vivo studies. BMC Veterinary Research 5, 4652.Google Scholar
Paraud, C., Lorrain, R., Pors, I. & Chartier, C. (2011) Administration of the nematophagous fungus Duddingtonia flagrans to goats: an evaluation of the impact of this fungus on the degradation of feces and on free-living soil nematodes. Journal of Helminthology 21, 19.Google Scholar
Paz-Silva, A., Francisco, I., Valero-Coss, R.O., Cortiñas, F.J., Sánchez, J.A., Francisco, R., Arias, M., Suárez, J.l., López-Arellano, M.E., Sánchez-Andrade, R. & Mendoza-de-Gives, P. (2011) Ability of the fungus Duddingtonia flagrans to adapt to the cyathostomin egg-output by spreading chlamydospores. Veterinary Parasitology 179, 277282.Google Scholar
Pollot, G.E. & Kilkenny, J.B. (1976) A note on the use of condition scoring in commercial sheep flocks. Animal Productions 23, 261264.Google Scholar
Rubio, C. & Vidal, J. (2000) El bloque multi-nutricional (BMN) investigación en nutrición de rumiantes en pastoreo. Libro Técnico. pp. 16. México, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias.Google Scholar
Sadiqqi, H.A. (2011) Small ruminant resistance against gastrointestinal nematodes: a case of Haemonchus contortus . Parasitology Research 109, 14831500.Google Scholar
Sagüés, M.F., Fusé, L.A., Fernández, S.A., Iglesias, L.E., Moreno, F.C. & Saumell, C.A. (2011) Efficacy of an energy block containing Duddingtonia flagrans in the control of gastrointestinal nematodes in sheep. Parasitology Research 109, 707713.Google Scholar
SAS Institute. (1998) Language guide for personal computer release. 6.03 Edition. Cary. North Carolina, USA, SAS Institute.Google Scholar
Torres-Acosta, J.F.J. & Aguilar-Caballero, A.J. (2005) Control, Prevención y erradicación de la nematodiasis gastrointestinal en rumiantes. In Rodríguez, V.I. & Cob, G.L. (Eds) Enfermedades de importancia económica en mamíferos domésticos. México, McGraw-Hill.Google Scholar
Torres-Acosta, J.F.J., Molento, M. & Mendoza-de-Gives, P. (2012) Research and implementation of novel approaches for the control of nematode parasites in Latin America and the Caribbean: Is there sufficient incentive for a greater extension effort? Veterinary Parasitology 186, 132142.Google Scholar
Valcárcel-Sancho, F., Rojo-Vázquez, F.A., Olmeda-García, A.S., Arribas-Novillo, B. & Márquez-Sopeña, L.F. (2009) Atlas de Parasitología Ovina. Zaragoza, España, Editorial Servet.Google Scholar
Walkden-Brown, A.F., Colvin, A.B., Hall, C., Knox, M.R., Mackay, E. & Scott, J.M. (2013) Grazing systems and worm control in sheep: a long-term case study involving three management systems with analysis of factors influencing faecal worm egg count. Animal Production Science 53, 765779.Google Scholar
Wolstenholme, A.J. & Kaplan, R.M. (2012) Resistance to macrocyclic lactones. Current Pharmaceutical Biotechnology 13, 873887.CrossRefGoogle ScholarPubMed
Zajac, A.M., Krakowka, S., Herd, R.P. & McClure, K.E. (1990) Experimental Haemonchus contortus infection in three breeds of sheep. Veterinary Parasitology 36, 221235.CrossRefGoogle ScholarPubMed