Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T02:12:13.880Z Has data issue: false hasContentIssue false

Entomopathogenic nematodes for the control of the codling moth (Cydia pomonella L.) in field and laboratory trials

Published online by Cambridge University Press:  20 October 2015

D. Odendaal
Affiliation:
Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
M.F. Addison
Affiliation:
Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
A.P. Malan*
Affiliation:
Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
*
*Fax: +27 21 8084807 E-mail: apm@sun.ac.za

Abstract

Three commercially available entomopathogenic nematode (EPN) strains (Steinernema feltiae and Heterorhabditis bacteriophora Hb1 and Hb2) and two local species (S.jeffreyense and S. yirgalemense) were evaluated for the control of the codling moth (Cydia pomonella). In field spray trials, the use of S. jeffreyense resulted in the most effective control (67%), followed by H. bacteriophora (Hb1) (42%) and S. yirgalemense (41%). Laboratory bioassays using spray application in simulated field conditions indicate S. feltiae to be the most virulent (67%), followed by S. yirgalemense (58%). A laboratory comparison of the infection and penetration rate of the different strains showed that, at 14°C, all EPN strains resulted in slower codling moth mortality than they did at 25°C. After 48 h, < 15% mortality was recorded for all species, whereas, at the warmer temperature, >98% mortality was recorded for all species involved. However, the washed codling moth larvae, cool-treated (at 14°C) with S. feltiae or S. yirgalemense, resulted in 100% mortality 24 h later at room temperature, whereas codling moth larvae treated with the two H. bacteriophora strains resulted in 68% and 54% control, respectively. At 14°C, S. feltiae had the highest average penetration rate of 20 IJs/larva, followed by S. yirgalemense, with 14 IJs/larva. At 25°C, S. yirgalemense had the highest penetration rate, with 39 IJs/larva, followed by S. feltiae, with 9 IJs/larva. This study highlights the biocontrol potential of S. jeffreyense, as well as confirming that S. feltiae is a cold-active nematode, whereas the other three EPN isolates tested prefer warmer temperatures.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audemard, H. (1991) Population dynamics of the codling moth. pp. 329338 in Van der Geest, L.P.S. & Evenhuis, H.H.E. (Eds) Tortricid pests. Their biology, natural enemies and control. Amsterdam, Elsevier Science Publishers B.V.Google Scholar
Barnes, M.M. (1991) Tortricids in pome and stone fruits, codling moth occurrence host race formation and damage. pp. 313317 in Van der Geest, L.P.S. & Evenhuis, H.H.E. (Eds) Tortricid pests. Their biology, natural enemies and control. Amsterdam, Elsevier Science Publishers B.V.Google Scholar
Campbell, J.F., Lewis, E., Yoder, F. & Gaugler, R. (1995) Entomopathogenic nematode (Heterhorhabditidae and Steinernematidae) seasonal population dynamics and impact on insect populations in turfgrass. Biological Control 5, 598606.CrossRefGoogle Scholar
Cossentine, J.E., Jensen, L.B. & Moyls, L. (2002) Fruit bins washed with Steinernema carpocapsae (Rhabditida: Steinernematidae) to control Cydia pomonella (Lepidoptera: Tortricidae). Biocontrol Science and Technology 12, 251258.CrossRefGoogle Scholar
Cross, J.V., Solomon, M.G., Chandler, D., Jarrett, P., Richardson, P.N., Winstanley, D., Bathon, H., Huber, J., Keller, B., Langenbruch, G.A. & Zimmerman, G. (1999) Biocontrol of pests of apples and pears in northern and central Europe: 1. Microbial agents and nematodes. Biocontrol Science and Technology 9, 125149.CrossRefGoogle Scholar
De Waal, J.Y. (2008) Entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) for the control of codling moth, Cydia pomonella (L.) under South African conditions. MScAgric thesis, Stellenbosch University, Stellenbosch.Google Scholar
De Waal, J.Y., Malan, A.P., Levings, J. & Addison, M.F. (2010) Key elements in the successful control of diapausing codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) in fruit bins with a South African isolate of Heterorhabditis zealandica (Rhabditida: Heterorhabditidae). Biocontrol Science and Technology 20, 489502.CrossRefGoogle Scholar
De Waal, J.Y., Malan, A.P. & Addison, M.F. (2011a) Efficacy of entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) against codling moth, Cydia pomonella (Lepidoptera: Tortricidae) in temperate regions. Biocontrol Science and Technology 20, 489502.Google Scholar
De Waal, J.Y., Malan, A.P. & Addison, M.F. (2011b) Evaluating mulches together with Heterorhabditis zealandica (Rhabditida: Heterorhabditidae) for the control of diapausing codling moth larvae, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Biocontrol Science and Technology 21, 225270.CrossRefGoogle Scholar
De Waal, J.Y., Addison, M.F. & Malan, A.P. (2013) A superabsorbent polymer formulation for improved efficacy of Heterorhabditis zealandica (Rhabditida: Heterorhabditidae) control of codling moth larvae, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Biocontrol Science and Technology 23, 6278.Google Scholar
Divya, K. & Sankar, M. (2009) Entomopathogenic nematodes in pest management. Indian Journal of Science and Technology 2, 5360.Google Scholar
Dutky, S.R. & Hough, W.S. (1955) Note on a parasitic nematode from codling moth larvae, Carpocapsae pomonella (Lepidoptera, Olethreutidae). Proceedings of the Entomological Society of Washington 57, 244.Google Scholar
Efron, B. & Tibshirani, R. (1993) An introduction to the bootstrap. London, Chapman & Hall.Google Scholar
Ehlers, R.U. (1996) Current and future use of nematodes in biocontrol: practice and commercial aspects with regard to regulatory policy issues. Biocontrol Science and Technology 6, 303316.Google Scholar
Ehlers, R.U. & Hokkanen, H.M.T. (1996) Insect biocontrol with non-endemic entomopathogenic nematodes (Steinernema and Heterorhabditis spp.): conclusions and recommendations of a combined OECD and COST workshop on scientific and regulatory policy issues. Biocontrol Science and Technology 6, 295302.CrossRefGoogle Scholar
Fife, J.P. (2003) Investigation of the effect of agricultural spray application equipment on damage to entomopathogenic nematodes: a biological pest control agent. PhD dissertation, Ohio State University, Ohio.Google Scholar
Gaugler, R. (1988) Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agriculture, Ecosystems and Environment 24, 352360.Google Scholar
Giliomee, J.H. & Riedl, H. (1998) A century of codling moth control in South Africa I. Historical perspective. Journal of South African Horticultural Science 8, 2731.Google Scholar
Grenier, E., Bonifassi, E., Abad, P. & Laumond, D. (1996) Use of species specific satellite DNAs as diagnostic probes in the identification of Steinernematidae and Heterorhabditidae entomopathogenic nematodes. Parasitology 113, 483489.CrossRefGoogle ScholarPubMed
Grewal, P.S., Selvan, S. & Gaugler, R. (1994) Thermal adaptation of entomopathogenic nematodes: niche breadth for infection, establishment, and reproduction. Journal of Thermal Biology 19, 245253.Google Scholar
Grewal, P.S., De Nardo, A.B. & Aguillera, M.M. (2001) Entomopathogenic nematodes: potential for exploration and use in South America. Neotropical Entomology 30, 191205.Google Scholar
Harington, J.S. (1953) Observation on the biology, the parasites and the taxonomic position of the maize beetle – Heteronychus san-helenae Blanch. South African Journal of Science 50, 1114.Google Scholar
Hatting, J., Stock, P.S. & Hazir, S. (2009) Diversity and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in South Africa. Journal of Invertebrate Pathology 102, 120128.Google Scholar
Hortgro. (2013) Key deciduous fruit statistics 2013. Paarl, Hortgro.Google Scholar
Kaya, H.K. & Stock, S.P. (1997) Techniques in insect nematology. pp. 283324 in Lacey, L.A. & Kaya, H.K. (Eds) Manual of techniques in insect pathology. San Diego, Academic Press.Google Scholar
Koppenhöfer, A.M. (2000) Nematodes. pp. 283301 in Lacey, L.A. & Kaya, H.K. (Eds) Field manual of techniques in invertebrate pathology. Dordrecht, Kluwer Academic.Google Scholar
Koppenhöfer, H.S. (2007) Bacterial symbionts of Steinernema and Heterorhabditis . pp. 735808 in Nguyen, K.B. & Hunt, D.J. (Eds) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Leiden, Brill.Google Scholar
Kung, S.P., Gaugler, R. & Kaya, H.K. (1991) Effects of soil temperature, moisture and relative humidity on entomopathogenic nematode persistence. Journal of Invertebrate Pathology 57, 242249.Google Scholar
Lacey, L.A. & Chauvin, R.L. (1999) Entomopathogenic nematodes for control of diapausing codling moth (Lepidoptera: Tortricidae) in fruit bins. Journal of Economic Entomology 92, 104109.Google Scholar
Lacey, L.A. & Georgis, R. (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology 44, 218225.Google ScholarPubMed
Lacey, L.A. & Unruh, T.R. (1998) Entomopathogenic nematodes for control of codling moth, Cydia pomonella (Lepidoptera: Tortricidae): effect of nematode species, concentration, temperature, and humidity. Biological Control 13, 190197.Google Scholar
Lacey, L.A., Frutos, R., Kaya, H.K. & Vail, P. (2001) Insect pathogens as biological control agents: do they have a future? Biological Control 21, 230248.Google Scholar
Lacey, L.A., Neven, L.G., Headrick, H.L. & Fritts, R. (2005) Factors affecting entomopathogenic nematodes (Steinernematidae) for control of overwintering codling moth (Lepidoptera: Tortricidae) in fruit bins. Journal of Economic Entomology 98, 18631869.Google Scholar
Lacey, L.A., Arthurs, S.P., Unruh, T.R., Headrick, H. & Fritts, R. (2006a) Entomopathogenic nematodes for control of codling moth (Lepidoptera: Tortricidae) in apple and pear orchards: effect of nematode species and seasonal temperatures, adjuvants, application equipment, and post-application irrigation. Biological Control 37, 214223.Google Scholar
Lacey, L.A., Granatstein, D., Arthurs, S.P., Headrick, H. & Fritts, R. Jr (2006b) Use of entomopathogenic nematodes (Steinernematidae) in conjunction with mulches for control of overwintering codling moth (Lepidoptera: Tortricidae). Journal of Entomological Science 41, 107119.CrossRefGoogle Scholar
Lacey, L.A., Shapiro-Ilan, D.I. & Glenn, G.M. (2010) Post-application of anti-desiccant agents improves efficacy of entomopathogenic nematodes in formulated host cadavers or aqueous suspension against diapausing codling moth larvae (Lepidoptera: Tortricidae). Biocontrol Science and Technology 20, 909921.Google Scholar
Malan, A.P., Nguyen, K.B. & Addison, M.F. (2006) Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the southwestern parts of South Africa. African Plant Protection 12, 6569.Google Scholar
Malan, A.P., Knoetze, R. & Moore, S.D. (2011) Isolation and identification of entomopathogenic nematodes from citrus orchards and their biocontrol potential against false codling moth. Journal of Invertebrate Pathology 108, 115125.Google Scholar
Malan, A.P., Knoetze, R. & Tiedt, L. (2014) Heterorhabditis noenieputensis n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. Journal of Helminthology 88, 139151.Google Scholar
Malan, A.P., Knoetze, R. & Tiedt, L. (2015) Steinernema jeffreyense n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. Journal of Helminthology. doi:10.1017/S0022149X15000097.Google Scholar
Mason, J.M., Matthews, G.A. & Wright, D.J. (1998) Screening and selection of adjuvants for the spray application of entomopathogenic nematodes against a foliar pest. Crop Protection 17, 463470.Google Scholar
Molotsane, R., Ngoma, L. & Gray, V. (2007) A biogeographic survey of entomopathogenic nematodes of Gauteng and the North West Province of South Africa. South African Journal of Plant and Soil 24, 256.Google Scholar
Navaneethan, T., Strauch, O., Besse, S., Bonhomme, A. & Ehlers, R.U. (2010) Influence of humidity and a surfactant-polymer-formulation on the control potential of the entomopathogenic nematode Steinernema feltiae against diapausing codling moth (Cydia pomonella L.) (Lepidoptera: Tortricidae). Biological Control 55, 777788.Google Scholar
Navon, A. & Ascher, K.R.S. (2000) Bioassays of entomopathogenic microbes and nematodes. Wallingford, CABI.Google Scholar
Odendaal, D., Addison, M.F. & Malan, A.P. (2015) Control of codling moth (Cydia pomonella) (Lepidoptera: Tortricidae) in South Africa with special emphasis on using entomopathogenic nematodes. African Entomology 23, 259274.Google Scholar
Odendaal, D., Addison, M.F. & Malan, A.P. (2016) Evaluation of aerial application of entomopathogenic nematodes for the control of diapausing codling moth (Cydia pomonella L.) under natural conditions. African Entomology, in press.Google Scholar
Shapiro-Ilan, D.I., Byron, G.A. & Gaugler, R. (2004) Nematodes (Rhabditida: Steinernematidae and Heterorhabditidae). Available at http://www.biocontrol.entomology.cornell.edu/pathogens/nematodes.php (accessed accessed 13 December 2014).Google Scholar
Shapiro-Ilan, D.I., Gouge, D.H., Piggott, S.J. & Fife, J.P. (2006) Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control 38, 124133.Google Scholar
Singh, P. & Ashby, M.D. (1986) Production and storage of diapausing codling moth larvae. Entomologia Experimentalis et Applicata 41, 7578.Google Scholar
Spaull, V.W. (1988) A preliminary evaluation of the entomogenous nematodes to control the African sugarcane stalk borer Eldana saccharina (Lepidoptera: Pyralidae). Proceedings of The South African Sugar Technologists' Association 62, 120123.Google Scholar
Spaull, V.W. (1990) Field tests to control the phylarid, Eldana saccharina, with an entomogenous nematode, Heterorhabditis sp. Proceedings of The South African Sugar Technologists' Association 64, 103106.Google Scholar
Spaull, V.W. (1991) Heterorhabditis and Steinernema species (Nematoda: Rhabditida) for the control of a sugar cane stalk borer in South Africa. Phytophylactica 23, 213215.Google Scholar
Unruh, T.R. & Lacey, L.A. (2001) Control of codling moth, Cydia pomonella (Lepidoptera: Tortricidae), with Steinernema carpocapsae: effects of supplemental wetting and pupation site on infection rate. Biological Control 20, 4856.Google Scholar
Van Niekerk, S. & Malan, A.P. (2014) Evaluating the efficacy of a polymer-surfactant formulation to improve control of Planococcus citri (Risso) (Hemiptera: Pseudococcidae) under simulated natural conditions. African Plant Protection 17, 18.Google Scholar
Van Niekerk, S. & Malan, A.P. (2015) Adjuvants to improve aerial control of the citrus mealybug Planococcus citri (Hemiptera: Pseudococcidae) using entomopathogenic nematodes. Journal of Helminthology 89, 189195.Google Scholar
Weiser, J. (1955) Neoaplectana carpocapsae n. sp. (Anguillulata, Steinernematinae), novy cizopasník housenek obaleče jablečného, Carpocapsa pomonella L. Věstník Českoslovaenské Zoologické Společynosti 19, 4452.Google Scholar
Wright, P.J. (1992) Cool temperature reproduction of steinernematid and heterorhabditid nematodes. Journal of Invertebrate Pathology 60, 148151.Google Scholar