Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T00:50:41.878Z Has data issue: false hasContentIssue false

Laboratory experiments to evaluate the ability of Arthrobotrys oligospora to destroy infective larvae of Cooperia species, and to investigate the effect of physical factors on the growth of the fungus

Published online by Cambridge University Press:  18 November 2009

J. Grønvold
Affiliation:
Royal Veterinary and Agricultural University, Institute of Hygiene and Microbiology, 13 Bülowsvej, DK-1870 Copenhagen V., Denmark
H. Korsholm
Affiliation:
Royal Veterinary and Agricultural University, Institute of Hygiene and Microbiology, 13 Bülowsvej, DK-1870 Copenhagen V., Denmark
J. Wolstrup
Affiliation:
Royal Veterinary and Agricultural University, Dept. of Microbiology and Microbial Ecology, 21 Rolighedsvej, DK-1958 Copenhagen V, Denmark
P. Nansen
Affiliation:
Royal Veterinary and Agricultural University, Institute of Hygiene and Microbiology, 13 Bülowsvej, DK-1870 Copenhagen V., Denmark
S. A. Henriksen
Affiliation:
Statc Veterinary Serum Laboratory, 27 Bülowsvej, DK-1870 Copenhagen V, Denmark

Abstract

Laboratory investigations were designed to study the influence of temperature, pH and oxygen tension on the growth of Arthrobotrys oligospora, a nematode-trapping microfungus. Experiments were performed to evaluate the potential role of A. oligospora in destroying third-stage larvae of Cooperia spp. on agar plates and in cattle faeces. The fungus had a growth rate optimum at 23°ree;C and pII 6. Anaerobic cultivation for 23 hours at 23°ree;C and 39°ree;C inhibited fungal growth, but it did not destroy the fungus, which regained growth upon a subsequent shift to aerobic conditions at 23°ree;C. Under experimental conditions in petri-dishes containing agar, the nematode-trapping efficiency of the fungus was striking in that 100% of a population of third-stage larvae of Cooperia spp. was captured within three days of the experiment. The trapping efficiency in faeces was shown to depend upon the inoculation level. At a concentration of approximately 2500 conidia per g faeces, 99% of the larvae were destroyed. The possibilities of using nematode-trapping fungi in controlling animal-parasitic nematodes arc discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barron, G. L. (1977) The nematode-destroying fungi. Canadian Biological Publications Ltd.Google Scholar
Beerens, H. & Castel, M. M. (1958–1959) Procédé simplifié de culture en surface des bactérics anacrobics comparaison avec la technique utilisant la culture en profonduer. Annales de I'institut Pasteur de Lille, 10, 183–92.Google Scholar
Cooke, R. C. (1963) Ecological characteristics of nematode-trapping Hyphomycetes. Annals of Applied Biology, 52, 431437.CrossRefGoogle Scholar
Cooke, R. C. & Godfrey, B. E. S. (1964) A key to the nematode-destroying fungi. Transactions of the British Mycological Society, 47(1), 6174.CrossRefGoogle Scholar
Deschiens, R. (1941) Innoculté des Hyphomocyétes prédateurs de nématodes pour la végétation des páturages et pour le bétail. Comptes Rendus des Séances de la Société de Biologie et de ses Finales, 135, 830832.Google Scholar
Duddington, C. L. (1951) The ecology of predacious fungi. Transactions of the British Mycological Society, 34, 322331.CrossRefGoogle Scholar
G., Fresenius(1850) Beiträge zur Mykologic. Frankfurt A. M., Heinrich Ludwig Brönner. 1863. No. 12.Google Scholar
Henriksen, S. A. & Korsholm, H. (1983) A method for culture and recovery of gastrointestinal strongyle larvae. Nordisk Veterinarmedicin, 35, 429430.Google Scholar
Jansson, H. B. & Nordbring-Hertz, B. (1980) Interactions between nematophagous fungi and plant-parasitic nematodes: Attraction, induction of trap formation and capture. Nematologica, 26, 383389.Google Scholar
Lysek, G. & Nordbring-Hertz, H. (1981) An endogenous rhythm of trap formation in the nematophagous fungus Arthrobotrys oligospora. Planta, 152, 5053.Google Scholar
Nordbring-Hertz, B. (1977) Nematode-induced morphogenesis in the predacious fungus Arthrobotrys oligospora. Nematologica, 23, 443451.CrossRefGoogle Scholar
Olthof, T. H. A. & Estey, R. (1965) Relation of some environmental factors to growth of several nematophagous Hyphomycetes. Canadian Journal of Microbiology, 11, 939946.CrossRefGoogle Scholar
Pandey, V. S. (1973) Predatory activity of nematode trapping fungi against the larvae of Trichostrongylus axei and Ostertagia ostertagi: A possible method of biological control. Journal of Helminthology, 47, 3548.CrossRefGoogle Scholar
Roubaud, E. & Deschiens, R. (1941) Essais relatifs a la prophylaxie de l'anguillulose du mouton par l'usage des Hyphomycétes prédateurs du sol. Cornptes Rendus des Séances de la Société de Biologie, 135, 687690.Google Scholar
Shepherd, A. M. (1961) Nematode-trapping fungi in Danish agricultural soils. Horticultura, 15, 9496.Google Scholar
Sørensen, S. P. L. (1909) Über die messung und die bedeutung der wasser-stoffionkonzentration bei enzymatischen prozessen. Biochemische Zeitschrift, 21, 131305.Google Scholar
Woronin, K. (1870) Sphaeria lemaneae, Sordaria coprophila, S. fimiseda, Arthrobotrys oligospora. In: de Bary A. & M. Woronin: Beitr, Morph, Physiol, Pilze, III, Abhandl, Senckenberg Naturforsch. Ges., 7, 325360.Google Scholar
Zopf, W. (1888) Zur Kenntniss der Infektions-Krankheiten niederer Tiere und Pflanzen. Nova Acta Leop Carol., 52, 314376.Google Scholar