Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T05:37:57.717Z Has data issue: false hasContentIssue false

Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change

Published online by Cambridge University Press:  22 March 2017

K.V. Galaktionov*
Affiliation:
Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg 199034, Russia

Abstract

This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal ‘transmission window’ may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths’ circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrov, N.M. & Denisenko, S.G. (1996) Oceanographic description of the Pechora Sea. pp. 166179 in Matishov, G.G., Tarasov, G.A. & Denisov, V.V. (Eds) Biogeocenoses of West Arctic glacial shelves. Apatity, Kola Scientific Center of the Russian Academy of Sciences Press (in Russian).Google Scholar
Alerstam, T., Bäckman, J., Gudmundsson, G.A., Hedenström, A., Henningsson, S.S, Karlsson, H., Rosén, M. & Strandberg, R. (2007) A polar system of intercontinental bird migration. Proceedings of the Royal Society of London B: Biological Sciences 274, 25232530.Google Scholar
Andersen, K., des Clers, S. & Jensen, T. (1995) Aspects of the sealworm Pseudoterranova decipiens life-cycle and seal-fisheries interactions along the Norwegian coast. pp. 557564 in Blix, A.S., Walløe, L. & Ulltang, Ø. (Eds) Whales, seals, fish and man. Amsterdam, Elsevier Science B.V. Google Scholar
Anderson, C. (2000) Nematode parasites of vertebrates. Their development and transmission. 672 pp. Wallingford, UK, CABI Publishing.Google Scholar
Anderson, C. & Wong, P.L. (1982) The transmission and development of Paracuaria adunca (Creplin, 1846) (Nematoda: Acuarioidea) of gulls (Laridae). Canadian Journal of Zoology 60, 30923104.Google Scholar
Averintsev, V.G. (1989) Seasonal dynamics of the polychaets (Errantia) in high Arctic ecosystems of Franz Josef Land. 78 pp. Apatity, Kola branch of the USSR Academy of Sciences Press (in Russian).Google Scholar
Babkov, A.N. (1998) Hydrology of the White Sea. 95 pp. Saint-Petersburg, Zoological Institute Publ.Google Scholar
Baer, J.G. (1956) Parasitic helminths collected in West Greenland. Meddelelser om Gronland 124, 152.Google Scholar
Baer, J.G. (1962) Cestoda. The Zoology of Iceland 2, 163.Google Scholar
Bakke, T.A. (1985) Studies of the helminth fauna of Norway XL: The common gull, Larus canus L., as final host for Cestoda (Platyhelminthes). Fauna Norwegica Ser. A. 6, 4254.Google Scholar
Baruš, V., Sergeeva, T.P., Sonin, M.D. & Ryzhikov, K.M. (1978) Helminths of fish-eating birds of the Palearctic region. I. Nematoda. 318 pp. Moscow-Prague, Academia.Google Scholar
Bates, A.E., Leiterer, F., Wiedeback, M.L. & Poulin, R. (2011) Parasitized snails take the heat: a case of host manipulation? Oecologia 167, 613621.Google Scholar
Belopolskaya, M.M. (1952) Parasite fauna of marine waterfowl. Uchenie Zapiski Leningradskogo Universiteta 141, ser. Biol. 28, 127180 (in Russian).Google Scholar
Belopolsky, L.O. & Shuntov, V.P. (1980) Birds of seas and oceans. 186 pp. Moscow, Nauka (in Russian).Google Scholar
Berge, J., Johnsen, G., Nilsen, F., Gulliksen, B. & Slagstad, D. (2005) Ocean temperature oscillations enable reappearance of blue mussel Mytilus edulis in Svalbard after 1000 years of absence. Marine Ecology Progress Series 303, 167175.Google Scholar
Berge, J., Renaud, P.E., Eiane, K., Gulliksen, B., Cottier, F.R., Varpe, O. & Brattegard, T. (2009) Changes in the decapod fauna of an Arctic fjord during the last 100 years (1908–2007). Polar Biology 32, 953961.CrossRefGoogle Scholar
Berger, V.Ja. (1986) Adaptation of marine molluscs to environmental salinity changes. 214 pp. Leningrad, Nauka Publ.Google Scholar
Berger, V.Ja. & Kharazova, A.D. (1997) Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355, 115126.CrossRefGoogle Scholar
Berger, V.Ja. Galaktionov, K.V. & Prokofiev, V.V. (2001) Influence of parasites on host adaptations to environmental factors: host–parasite system molluscs–trematode parthenitae. Parazitologiya 35, 192200 (in Russian).Google Scholar
Bianki, V.V., Boyko, N.S., Ninburg, E.A. & Shklarevich, G.A. (1979) Feeding of common eider in the White Sea. pp. 126170 in Uspenski, S.M. (Ed.) Ecology and morphology of eiders in USSR. Moscow, Nauka (in Russian).Google Scholar
Bishop, C.A. & Threlfall, W. (1974) Helminth parasites of the common eider duck, Somateria mollissima (L.), in Newfoundland and Labrador. Proceedings of the Helminthological Society of Washington 7, 2535.Google Scholar
Borgsteede, F.H.M., Okulewicz, A., Zoun, P.E.F. & Okulewicz, J. (2005) The gastrointestinal helminth fauna of the eider duck (Somateria mollissima L.) in the Netherlands. Helminthologia 42, 8387.Google Scholar
Borgsteede, F.H.M., Kavetska, K.M. & Zoun, P.E.F. (2006) Species of the nematode genus Amidostomum Railliet and Henry, 1909 in aquatic birds in the Netherlands. Helminthologia 43, 98102.Google Scholar
Born-Torrijos, A., Holzer, A.S., Raga, J.A. & Kostadinova, A. (2014) Same host, same lagoon, different transmission pathways: effects of exogenous factors on larval emergence in two marine digenean parasites. Parasitology Research 113, 545554.Google Scholar
Brooks, D.R., McLennan, D.A., León-Régagnon, V. and Hoberg, E.P. (2006) Phylogeny, ecological fitting and lung flukes: helping solve the problem of emerging infectious diseases. Revista Mexicana de Biodiversidad 77, 225233.Google Scholar
Brown, C., Corcoran, E., Herkenrath, P. & Thonell, J. (Eds) (2006) Marine and coastal ecosystems and human wellbeing: A synthesis report based on the findings of the Millennium Ecosystem Assessment. 76 pp. Nairobi, Kenya, UNEP, A Banson production.Google Scholar
Bustnes, J.O., Erikstad, K.E., Hanssen, S.A., Tveraa, T., Folstad, I. & Skaare, J.U. (2006) Anti-parasite treatment removes negative effects of environmental pollutants on reproduction in an Arctic seabird. Proceedings of the Royal Society of London B: Biological Sciences 273, 31173122.Google Scholar
Bustnes, J.O., Mosbech, A., Sonne, Ch. and Systad, G.H. (2010) Migration patterns, breeding and moulting locations of king eiders wintering in north-eastern Norway. Polar Biology 33, 13791385.Google Scholar
Chubrik, G.K. (1966) Fauna and ecology of trematode larvae from the molluscs of Barents and White Seas. pp. 78159 in Polyanskiy, G.I. (Ed.) Life cycles of parasitic worms of northern seas (Proceedings of the Murmansk Marine Biological Institute of the Kola Branch of the USSR Academy of Sciences 10(14)). Moscow–Leningrad, Nauka (in Russian).Google Scholar
Clark, G.M., O'Mera, D. & van Weelden, J.M. (1958) An epizootic among eider ducks involving an acanthocephalan worm. Journal of Wildlife Management 22, 204205.Google Scholar
Combes, C. (1996) Parasites, biodiversity and ecosystem stability. Biodiversity and Conservation 5, 953962.Google Scholar
Combescot-Lang, C. (1976) Etudes des digeneans parasites de Littorina saxatilis (Olivi) et de leurs effect sur cet hôte. Annales de Parasitologie Humaine et Comparee 51, 2736.Google Scholar
Cribb, T.H., Bray, R.A., Olson, P.D. & Littlewood, D.T. (2003) Life cycle evolution in the Digenea: a new perspective from phylogeny. Advances in Parasitology 54, 197254.Google Scholar
Dahl-Jensen, D., Bamber, J., Boggild, C.E., Buch, E., Christensen, J.H., Dethloff, K., Fahnestock, M., Marshall, S., Rosing, M., Steffen, K., Thomas, R., Truffer, M. & van der Veen, C. (2012) The Greenland Ice Sheet in a changing climate. pp. 818868 in AMAP, 2011. Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate change and the cryosphere. Oslo, Norway, Arctic Monitoring and Assessment Programme (AMAP).Google Scholar
Dau, C.P., Flint, P.L. & Petersen, M.R. (2000) Distribution of recoveries of Steller's Eiders banded on the lower Alaska Peninsula, Alaska. Journal of Field Ornithology 71, 541548.Google Scholar
Deblock, S. (1980) Inventaire des trématodes larvaires parasites des mollusques Hydrobia (Prosobranches) des côtes de France. Parassitologia 22, 1105.Google Scholar
de Montaudouin, X., Blanchet, H., Lavesque, N., Desclaux-Marchand, C. & Bachelet, G. (2016a) Cockle infection by Himasthla quissetensis – I. From cercariae emergence to metacercariae infection. Journal of Sea Research 113, 99107.Google Scholar
de Montaudouin, X., Blanchet, H., Bazairi, H., Nazik, A., Desclaux-Marchand, C. & Bachelet, G. (2016b) Cockle infection by Himasthla quissetensis – II. The theoretical effect of climate change. Journal of Sea Research 113, 108114.Google Scholar
Denisenko, S.G. (2013) Biodiversity and bioresources of macrozoobenthos in the Barents Sea. Structure and long-term changes. 284 pp. Saint Petersburg, Nauka (in Russian).Google Scholar
Dobson, A.P., Lafferty, K.D., Kuris, A.M., Hechinger, R.F. & Jetz, W. (2008) Homage to Linnaeus: how many parasites? How many hosts? Proceedings of the National Academy of Sciences of the USA 105, 1148211489.Google Scholar
Doney, S.C., Balch, W.M., Fabry, V.J. & Feely, R.A. (2009) Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22, 1625.Google Scholar
Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, Ch.A., Galindo, H.M., Grebmeier, J.M., Hollowed, A.B., Knowlton, N., Polovina, J., Rabalais, N.N., Sydeman, W.J., & Talley, L.D. (2012) Climate change impacts on marine ecosystems. Annual Review of Marine Science 4, 1137.Google Scholar
Feely, R.A., Doney, S.C. & Cooley, S.R. (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22, 3647.Google Scholar
Filimonova, L.V. (1985) Trematodes of the USSR fauna. Notocotylids. 128 pp. Moscow, Nauka (in Russian).Google Scholar
Galaktionov, K.V. (1990) Influence of parthenitae of microphallid trematodes parasitism on resistance of intertidal molluscs Littorina saxatilis (Olivi) to stress factors. pp. 1233 in Dobrovolskij, A.A., Galaktionov, K.V. & Strelkov, A.A. (Eds) Morphology and ecology of parasites of marine animals. Apatity, Kola Scientific Center of the USSR Academy of Sciences Press (in Russian).Google Scholar
Galaktionov, K.V. (1993) Life cycles of trematodes as components of ecosystems. 190 pp. Apatity, Kola Scientific Centre of the Russian Academy of Sciences Publ. (in Russian).Google Scholar
Galaktionov, K.V. (1996a) Life cycles and distribution of seabird helminths in the Arctic and sub-Arctic regions. Bulletin of the Scandinavian Society for Parasitology 6, 3149.Google Scholar
Galaktionov, K.V. (1996b) Impact of seabird helminths on host populations and coastal ecosystems. Bulletin of the Scandinavian Society for Parasitology 6, 5064.Google Scholar
Galaktionov, K.V. (2016) Transmission of parasites in the coastal waters of the Arctic seas and the possible effect of climate change. Zoologichesky Zhurnal 95, 9961016 (in Russian).Google Scholar
Galaktionov, K.V. & Atrashkevich, G.I. (2015) Patterns in circulation and transmission of marine bird parasites in High Arctic: a case of acanthocephalan Polymorphus phippsi (Acanthocephala, Polymorphidae). Parazitologiya 49, 393411(in Russian).Google Scholar
Galaktionov, K.V. & Bustnes, J.O. (1999) Distribution patterns of marine bird digenean larvae in periwinkles along the southern Barents Sea coast. Diseases of Aquatic Organisms 37, 221230.Google Scholar
Galaktionov, K.V. & Dobrovolskij, A.A. (2003) The biology and evolution of trematodes. An essay on the biology, morphology, life cycles, transmissions, and evolution of digenetic trematodes. 592 pp. Boston, Dordrecht & London, Kluwer Academic.Google Scholar
Galaktionov, K.V. & Rusanov, N.I. (1983) Some ecological population aspects of interrelationships in system ‘molluscs of the genus Littorina–trematode parthenitae’ at the intertidal site of the Barents Sea coast. pp. 6583 in Matishov, G.G. (Ed.) Studies of biology, morphology and physiology of hydrobionts. Apatity, Kola branch of the USSR Academy of Sciences Press (in Russian).Google Scholar
Galaktionov, K.V. & Skírnisson, K. (2000) Digeneans from intertidal molluscs of SW Iceland. Systematic Parasitology 47, 87101.Google Scholar
Galaktionov, K.V., Marasaev, S.F. & Marasaeva, E.F. (1993) Parasites in maritime ecosystems. pp. 213221 in Matishov, G.G. (Ed.) Environment and ecosystems of the Franz Josef Land (archipelago and shelf). Apatity, Kola Science Centre Publ. Google Scholar
Galaktionov, K.V., Berger, V.Ya. & Prokofiev, V.V. (2002) Comparison of resistance to environmental factors of the molluscs Hydrobia ulvae infected with trematode parthenitae and free from infection. Parazitologiya 36, 195202 (in Russian).Google Scholar
Galaktionov, K.V., Bulat, S.A., Alekhina, I.A., Saville, D.H., Fitzpatrick, S.M. & Irwin, S.W.B. (2004) An investigation of evolutionary relationships within ‘pygmaeus’ group microphallids (Trematoda: Microphallidae) using genetic analysis and scanning electron microscopy. Journal of Helminthology 78, 231236.Google Scholar
Galaktionov, K.V., Irwin, S.W.B., Prokofiev, V.V., Saville, D.H., Nikolaev, K.E. & Levakin, I.A. (2006) Trematode transmission in coastal communities – temperature dependence and climate change perspectives. pp. 85–90 in 11th International Congress of Parasitology (ICOPA XI). Proceedings of the 11th International Congress of Parasitology in Glasgow (Scotland, United Kingdom), August 6–11, 2006. Bologna, Italy, Medimond International Proceedings.Google Scholar
Galaktionov, K.V., Blasco-Costa, I. & Olson, P.D. (2012) Life cycles, molecular phylogeny and historical biogeography of the ‘pygmaeus’ microphallids (Digenea: Microphallidae): widespread parasites of marine and coastal birds in the Holarctic. Parasitology 139, 13461360.Google Scholar
Galaktionov, K.V., Bustnes, J.O., Bardsen, B.-J., Nikolaev, K.E., Sukhotin, A.A., Ivanov, M.V., Wilson, J.G., Skírnisson, K., Saville, D.H. & Regel, K.V. (2015) Factors influencing the distribution of trematode larvae in blue mussels Mytilus edulis across the North-eastern Atlantic and Arctic Ocean. Marine Biology 162, 193206.Google Scholar
Galkin, A.K., Galaktionov, K.V., Marasaev, S.F. & Prokofyev, V.V. (1994) Cestodes of the fish-eating birds of Kharlov island and Franz Josef Land. Parazitologiya 28, 373384 (in Russian).Google Scholar
Galkin, A.K., Galaktionov, K.V. & Marasaev, S.F. (1999) The occurrence of Microsomacanthus ductilis (Cestoda: Hymenolepididae) in eider ducks of Franz Joseph Land. Parazitologiya 33, 113117 (in Russian).Google Scholar
Ganter, B., Gaston, A.J., Anker-Nilssen, T., Blancher, P., Boertmann, D., Collins, B., Ford, V., Garðasson, A., Gauthier, G., Gavrilo, M.V., Gilchrist, G., Gill, R.E., Irons, D., Lappo, E.G., Mallory, M., Merkel, F., Morrison, G., Mustonen, T., Petersen, A., Sitters, H.P., Smith, P., Strøm, H., Syroechkovskiy, E.E. & Tomkovich, P.S. (2013) Birds. pp. 142181 in Meltofte, H., Josefson, A.B. & Payer, D. (Eds) Arctic Biodiversity Assessment: Status and trends in Arctic biodiversity. The conservation of arctic flora and fauna (CAFF). Akureyri, Arctic Council.Google Scholar
Garden, E.A., Rayski, C. & Thom, V.M. (1964) A parasitic disease in eider ducks. Bird Study 11, 280287.Google Scholar
Gattuso, J.P. & Buddemeier, R.W. (2000) Ocean biogeochemistry: calcification and CO2 . Nature 407, 311313.Google Scholar
Golikov, A.N. & Kusakin, O.G. (1978). Shell-bearing molluscs of the USSR seas intertidal. 292 pp. Leningrad, Nauka (in Russian).Google Scholar
Gonchar, A. & Galaktionov, K.V. (2017) Life cycle and biology of Tristriata anatis (Digenea: Notocotylidae): morphological and molecular approaches. Parasitology Research 116, 4559.Google Scholar
Hakalahti, T., Karvonen, A. & Valtonen, E.T. (2006) Climate warming and disease risks in temperate regions – Argulus coegoni and Diplostomum spathaceum as case studies. Journal of Helminthology 80, 9398.Google Scholar
Hanssen, S.A., Folstad, I., Erikstad, K.E. & Oksanen, A. (2003) Costs of parasites in common eiders: effect of antiparasite treatment. Oikos 100, 105111.Google Scholar
Harland, H., MacLeod, C.D. & Poulin, R. (2015) Non-linear effects of ocean acidification on the transmission of a marine intertidal parasite. Marine Ecology Progress Series 536, 5564.Google Scholar
Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S. & Samuel, M.D. (2002) Ecology – climate warming and disease risks for terrestrial and marine biota. Science 296, 21582162.Google Scholar
Hoberg, E.P. (1986) Evolution and historical biogeography of a parasite–host assemblage: Alcataenia spp. (Cyclophyllidea: Dilepididae) in Alcidae (Charadriiformes). Canadian Journal of Zoology 64, 25762589.Google Scholar
Hoberg, E.P. (1992) Congruent and synchronic patterns in biogeography and speciation among seabirds, pinnipeds and cestodes. Journal of Parasitology 78, 601615.Google Scholar
Hoberg, E.P. (1995) Historical biogeography and modes of speciation across high-latitude seas of the Holarctic: concepts for host–parasite coevolution among the Phocini (Phocidae) and Tetrabothriidae. Canadian Journal of Zoology 73, 4557.Google Scholar
Hoberg, E.P. & Adams, A. (1992) Phylogeny, historical biogeography, and ecology of Anophryocephalus spp. (Eucestoda: Tetrabothriidae) among pinnipeds of the Holarctic during the late Tertiary and Pleistocene. Canadian Journal of Zoology 70, 703719.Google Scholar
Hoberg, E.P. & Adams, A. (2000) Phylogeny, history and biodiversity: understanding faunal structure and biogeography in the marine realm. Bulletin of the Scandinavian Society of Parasitology 10, 1937.Google Scholar
Hoberg, E.P. & Brooks, D.R. (2008) A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host–parasite systems. Journal of Biogeography 35, 15331550.Google Scholar
Hoberg, E.P., Kutz, S.J., Cook, J., Galaktionov, K.V., Haukisalmi, V., Henttonen, H., Laaksonen, S., Makarikov, A. & Marcogliese, D.J. (2013) Parasites. pp. 420449 in Meltofte, H., Josefson, A.B. & Payer, D. (Eds) Arctic Biodiversity Assessment: Status and trends in Arctic biodiversity. The conservation of arctic flora and fauna (CAFF). Akureyri, Arctic Council.Google Scholar
Irwin, S.W.B. (1983) Incidence of trematode parasites in two populations of Littorina saxatilis (Olivi) from the north shore of Belfast Lough. Irish Naturalist Journal 21, 2629.Google Scholar
Itamies, J., Valtonen, T. & Fagerholm, H.-P. (1980) Polymorphus minutus (Acanthocephala) infestation of eiders and its role as a possible cause of death. Annales Zoologici Fennici 17, 285289.Google Scholar
James, B.L. (1968a) The distribution and keys of species in the family Littorinidae and their digenean parasites, in the region of Dale, Pembrokeshire. Field Studies 2, 615650.Google Scholar
James, B.L. (1968b) The occurrence of larval Digenea in ten species of intertidal prosobranch molluscs in Cardigan Bay. Journal of Natural History 2, 329343.Google Scholar
James, B.L. (1969) The Digenea of the intertidal prosobranch, Littorina saxatilis (Olivi). Zeitschrift für Zoologie, Systematik und Evolutionforschung 7, 273316.Google Scholar
James, B.L. (1971) Host selection and ecology of marine digenean larvae. pp. 179196 in Crisp, D.J. (Ed.) Fourth European Marine Biology Symposium. Cambridge, Cambridge University Press.Google Scholar
Jensen, K.T. & Mouritsen, K.N. (1992) Mass mortality in two common soft-bottom invertebrates, Hydrobia ulvae and Corophium volutator – the possible role of trematodes. Helgoländer Meeresuntersuchung 46, 329339.Google Scholar
Johnson, S.R. and Herter, D.R. (1990) Bird migration in the Arctic: a review. pp. 2243 in Gwinner, E. (Ed.) Bird migration. Berlin, Springer.Google Scholar
Josefson, A.B., Mokievsky, V., Bergmann, M., Blicher, M.E., Bluhm, B., Cochrane, S., Denisenko, N.V., Hasemann, Ch., Jorgensen, L.L., Klages, M., Schewe, I., Sejr, M.K., Soltwedel, T., Węsławski, J.M. & Włodarska-Kowalczuk, M. (2013) Marine invertebrates. pp. 277309 in Meltofte, H., Josefson, A.B. & Payer, D. (Eds) Arctic Biodiversity Assessment: Status and trends in Arctic biodiversity. The conservation of Arctic flora and fauna (CAFF). Akureyri, Arctic Council.Google Scholar
Kattsov, V.M. & Källén, E. (2005) Future climate change: modeling and scenarios for the Arctic. pp. 99150 in Symon, C., Arris, L. & Heal, B. (Eds) Arctic climate impact assessment (ACIA). New York, Cambridge University Press.Google Scholar
Kędra, M., Moritz, Ch., Choy, E.S., David, C., Degen, R., Duerksen, S., Ellingsen, I., Górska, B., Grebmeier, J.M., Kirievskaya, D., van Oevelen, D., Piwosz, K., Samuelsen, A. & Węsławski, J.M. (2015) Status and trends in the structure of Arctic benthic food webs. Polar Research 34, 23775. http://dx.doi.org/10.3402/polar.v34.23775 Google Scholar
Kelly, M.W. & Hofmann, G.E. (2013) Responses to global climate change: adaptation and the physiology of ocean acidification. Functional Ecology 27, 980990.Google Scholar
Kidawa, D., Jakubas, D., Wojczulanis-Jakubas, K., Stempniewicz, L., Trudowska, E., Boehnke, R., Keslinska-Nawrot, L. & Błachowiak-Samołyk, K. (2015) Parental efforts of an Arctic seabird, the little auk Alle alle, under variable foraging conditions. Marine Biology Research 11, 349360.Google Scholar
Køie, M. & Fagerholm, H.P. (1995) The life cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infections. Parasitology Research 81, 481489.Google Scholar
Koprivnikar, J. & Poulin, R. (2009) Interspecific and intraspecific variation in cercariae release. Journal of Parasitology 95, 1419.Google Scholar
Koprivnikar, J., Lim, D., Fu, C. & Brack, S.H.M. (2010) Effects of temperature, salinity, and pH on the survival and activity of marine cercariae. Parasitology Research 106, 11671177.Google Scholar
Koszteyn, J., Kwaśniewski, S., Różycki, O. & Węslawski, J.M. (1991) Atlas of the marine fauna of Southern Spitsbergen. Vol. 2. 550 pp. Gdansk, Polish Academy of Sciences Press.Google Scholar
Krasnov, Yu.V., Shklyarevich, G.A. & Goryaev, Yu.I. (2009) Feeding habit of the common eider Somateria mollissima in the White Sea. Doklady Biological Sciences 427, 343345 (in Russian) [English version: Doklady Akademii Nauk (2009) 427(2), 282–285].Google Scholar
Kroeker, K.J., Kordas, R.L., Crim, R.N. & Singh, G.G. (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13, 14191434.Google Scholar
Kuklin, V.V. (2001) On a helminth fauna of seabirds of the Archangelskaya Bay (northern island of Novaya Zemlya). Parazitologiya 35, 124134 (in Russian).Google Scholar
Kuklin, V.V. & Kuklina, M.M. (2005). Helminths of birds of the Barents Sea: fauna, ecology and impact on the hosts. 289 pp. Apatity, Kola Science Center Publ. (in Russian).Google Scholar
Kuklin, V.V. & Kuklina, M.M. (2013). Helminth fauna of birds of the Barents and Kara Seas and interrelationships in the system ‘helminths–seabirds’. pp. 159177 in Makarevich, P.R. (Ed.) Birds of northern and southern seas of Russia: fauna, ecology. Apatity, Kola Science Center Publ. (in Russian).Google Scholar
Kuklin, V.V., Galktionov, K.V., Galkin, A.K. & Marasaev, S.F. (2005) A comparative analysis of the helminth fauna of Kittiwake Rissa tridactyla (Linnaeus, 1758) and Glaucous gull Larus hyperboreus Gunnerus, 1767 from different parts of the Barents Sea. Parazitologya 39, 544558 (in Russian).Google Scholar
Kulachkova, V.G. (1979) Helminths as a cause of common eider's death in the top of Kandalaksha Gulf. pp. 119125 in Uspenskiy, S.M. (Ed.) Ecology and morphology of eiders in the USSR. Moscow, Nauka (in Russian).Google Scholar
Kuris, A.M., Hechinger, R.F., Shaw, J.C., Whitney, K.L., Aguirre-Macedo, L., Boch, Ch.A., Dobson, A.P., Dunham, E.J., Fredensborg, B.L., Huspeni, T.C., Lorda, J., Mababa, L., Mancini, F.T., Mora, A.B., Pickering, M., Talhouk, N.L., Torchin, M.E. & Lafferty, K.D. (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515518.Google Scholar
Kutz, S.J., Hoberg, E.P., Polley, L. & Jenkins, E.J. (2005) Global warming is changing the dynamics of arctic host–parasite systems. Proceedings of the Royal Society of London B: Biological Sciences 272, 25712576.Google Scholar
Lafferty, K.D. (2009) The ecology of climate change and infectious diseases. Ecology 90, 888900.Google Scholar
Lafferty, K.D., Allesina, S., Arim, M., Briggs, C.J., De Leo, G., Dobson, A.P., Dunne, J.A., Johnson, P.T.J., Kuris, A.M., Marcogliese, D.J., Martinez, N.D., Memmott, J., Marquet, P.A., McLaughlin, J.P., Mordecai, E.A., Pascual, M., Poulin, R. & Thieltges, D.W. (2008) Parasites in food webs: the ultimate missing links. Ecology Letters 11, 533546.Google Scholar
Lauckner, G. (1980) Diseases of Mollusca: Gastropoda. pp. 311424 in Kinne, O. (Ed.) Diseases of marine animals, Vol. 1, General aspects, Protozoa to Gastropoda. New York, John Wiley & Sons.Google Scholar
Lei, F. & Poulin, R. (2011) Effects of salinity on multiplication and transmission of an intertidal trematode parasite. Marine Biology 158, 9951003.Google Scholar
Leonov, V.A. (1979) Acanthocephalans of the Wrangel Island. pp. 83–86 in Free-living and parasitic worms. Deposited in VINITI No. 1800-79 (in Russian).Google Scholar
Leonov, V.A. & Belogurov, O.I. (1970) Cestodes of superfamily Dilepidoidea Mathevossian, 1962 of marine and fish-eating birds of the Wrangel Island. pp. 26–36 in Parasitological and zoological investigations at the Far East (Scientific Memories of the Far East State University 16) (in Russian).Google Scholar
Leonov, V.A., Belogurov, O.I. & Zueva, L.S. (1970) Hymenolepidis (Cestoda: Hymenolepididae) of anserine birds of the Wrangel Island. pp. 36–45 in Parasitological and zoological investigations at the Far East (Scientific Memories of the Far East State University 16) (in Russian).Google Scholar
Loeng, H., Blindhelm, J., Andalsvlk, B. & Ottersen, G. (1992) Climatic variability in the Norwegian and Barents Seas. ICES Marine Science Symposia 195, 5261.Google Scholar
Loeng, H. (Leading author), Brander, K., Carmack, E., Denisenko, S., Drinkwater, K., Hansen, B., Kovacs, K., Livingston, P., McLaughlin, F., Sakshau, E. (Contributing authors), Bellerby, R. Browman, H., Furevik, T., Grebmeier, J.M., Jansen, E., Jónsson, S., Jørgensen, L.L., Malmberg, S.-A., Østerhus, S., Ottersen, G. & Shimada, K. (Consulting authors) (2005) Marine systems. pp. 453538 in Symon, C., Arris, L. & Heal, B. (Eds) (ACIA) Arctic Climate Impact Assessment. New York, Cambridge University Press.Google Scholar
Lydersen, C., Gjertz, I. & Weslawski, J. M. (1989) Stomach contents of autumn-feeding marine vertebrates from Hornsund, Svalbard. Polar Record 25, 107114.Google Scholar
MacLeod, C.D. & Poulin, R. (2015). Differential tolerances to ocean acidification by parasites that share the same host. International Journal for Parasitology 45, 485493.Google Scholar
Marcogliese, D.J. (1992) Neomysis americana (Crustacea: Mysidacea) as an intermediate host for sealworm, Pseudoterranova decipiens (Nematoda: Ascaridoidea), and spirurid nematodes (Acuarioidea). Canadian Journal of Fisheries and Aquatic Sciences 49, 513515.Google Scholar
Marcogliese, D.J. (2001) Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology 79, 13311352.CrossRefGoogle Scholar
Markov, G.S. (1937) Age changes in parasite fauna of murres of the Novaya Zemlya. Proceedings of the Leningrad Society of the Natural History 66, 456465 (in Russian).Google Scholar
Markov, G.S. (1941) Parasitic worms of Bezymiannaya Bay (Novaya Zemlya). Doklady Academy Nauk SSSR 30, 573576 (in Russian).Google Scholar
Mas-Coma, S., Valero, M.A. & Bargues, M.D. (2009) Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Veterinary Parasitology 163, 264280.Google Scholar
Matthews, P.M., Montgomery, W.I. & Hanna, R.E.B. (1985) Infestation of littorinids by larval Digenea around a small fishing port. Parasitology 90, 277287.Google Scholar
McDonald, M.E. (1969) Catalogue of helminths of waterfowl (Anatidae). Bureau of Sport Fisheries and Wildlife. Special Scientific Report. Wildlife 126. 692 pp. Washington, DC, United States Department of the Interior, Fish and Wildlife Service.Google Scholar
McDonald, M.E. (1988) Key to Acanthocephala reported in waterfowl. Resource Publication 173. 45 pp. Washington, DC, United States Fish and Wildlife Service.Google Scholar
McGill, L.M, Shannon, A.J., Pisani, D., Felix, M.-A., Ramlov, H., Dix, I., Wharton, D.A. & Burnell, A.M. (2015) Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats. PLoS One 10, e0116084. doi 10.1371/journal.pone.0116084 Google Scholar
Mehlum, F. & Gabrielsen, G.W. (1993) The diet of high-arctic seabirds in coastal and ice-covered, pelagic areas near the Svalbard archipelago. Polar Research 12, 120.Google Scholar
Meltofte, H., Josefson, A.B. & Payer, D. (Eds) (2013) (ABA) Arctic Biodiversity Assessment: Status and trends in Arctic biodiversity. The conservation of Arctic flora and fauna (CAFF). 674 pp. Akureyri, Arctic Council. Available at http://www.arcticbiodiversity.is/the-report/ (accessed 8 March 2017).Google Scholar
Minchella, D.J. & Scott, M.E. (1991) Parasitism: a cryptic determinant of animal community structure. Trends in Ecology & Evolution 6, 250254.Google Scholar
Miura, O., Torchin, M.E., Kuris, A.M., Hechinger, R.F. & Chiba, S. (2006) Introduced cryptic species of parasites exhibit different invasion pathways. Proceedings of the National Academy of Sciences, USA 103, 1981819823.Google Scholar
Morley, N.J. (2011) Thermodynamics of cercarial survival and metabolism in a changing climate. Parasitology 138, 14421452.Google Scholar
Morley, N.J. (2012) Thermodynamics of miracidial survival and metabolism. Parasitology 139, 16401651.CrossRefGoogle ScholarPubMed
Morley, N.J. & Lewis, J.W. (2013) Thermodynamics of cercarial development and emergence in trematodes. Parasitology 140, 12111224.CrossRefGoogle ScholarPubMed
Morley, N.J. & Lewis, J.W. (2014) Temperature stress and parasitism of endothermic hosts under climate change. Trends in Parasitology 30, 221227.Google Scholar
Morley, N.J. & Lewis, J.W. (2015) Thermodynamics of trematode infectivity. Parasitology 142, 585597.Google Scholar
Mouritsen, K.N. (2002) The Hydrobia ulvae–Maritrema subdolum association: influence of temperature, salinity, light, water-pressure and secondary host exudates on cercarial emergence and longevity. Journal of Helminthology 76, 341347.Google Scholar
Mouritsen, K.N. & Jensen, K.T. (1997) Parasite transmission between soft-bottom invertebrates: temperature mediated infection rates and mortality in Corophium volutator . Marine Ecology Progress Series 151, 123134.CrossRefGoogle Scholar
Mouritsen, K.N. & Poulin, R. (2002a) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124, S101S117.Google Scholar
Mouritsen, K.N. & Poulin, R. (2002b) Parasitism, climate oscillation and the structure of natural communities. Oikos 97, 462468.Google Scholar
Mouritsen, K.N. & Poulin, R. (2010) Parasitism as a determinant of community structure on intertidal flats. Marine Biology 157, 201213.Google Scholar
Muzaffar, S.B. (2009) Helminths of murres (Alcida: Uria spp.): markers of ecological change in the marine environment. Journal of Wildlife Diseases 45, 672683.Google Scholar
Muzaffar, S.B., Hoberg, E.P. & Jones, I.L. (2005) Possible recent expansion of Alcataenia longicervica (Eucestoda: Dilepididae) parasitic in murres Uria spp. (Alcida) into the North Atlantic. Marine Ornithology 33, 189191.Google Scholar
Nagasawa, K. (1990) The life cycle of Anisakis simplex: a review. pp. 3139 in Ishikura, H. & Kikuchi, K. (Eds) Intestinal anisakiasis in Japan. Tokyo, Springer-Verlag.Google Scholar
Newton, I. (2003) The speciation and biogeography of birds. 668 pp. Amsterdam, Elsevier Science.Google Scholar
Overland, J.E., Wood, K.R. & Wang, M. (2011) Warm Arctic–cold continents: climate impacts of the newly open Arctic Sea. Polar Research 30, 15787. doi:10.3402/polar.v30i0.15787.Google Scholar
Parker, G.A., Ball, M.A. & Chubb, J.C. (2015) Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent. Journal of Evolutionary Biology 28, 267291.Google Scholar
Payer, D.C., Josefson, A.B. & Fjeldså, J. (2013) Species diversity in the Arctic. pp. 6777 in Meltofte, H., Josefson, A.B. & Payer, D. (Eds) Arctic Biodiversity Assessment: Status and trends in Arctic biodiversity. The conservation of arctic flora and fauna (CAFF). Akureyri, Arctic Council.Google Scholar
Persson, L., Borg, K. & Fält, H. (1974) On the occurrence of endoparasites in eider ducks in Sweden. Viltrevy-Stockholm 9, 124.Google Scholar
Petersen, M.R., Bustnes, J.O. & Systad, G.H. (2006) Breeding and moulting locations and migration patterns of the Atlantic population of Steller's Eiders Polysticta stelleri as determined from satellite telemetry. Journal of Avian Biology 37, 5868.Google Scholar
Petrochenko, V.I. (1958) Acanthocephala (thornyheads) of domestic and wild animals. Vol. II. 458 pp. Moscow, USSR Academy of Sciences Press (in Russian).Google Scholar
Phoenix, G.K. & Lee, J.A. (2004) Predicting impacts of Arctic climate change: past lessons and future challenges. Ecological Research 19, 6574.Google Scholar
Pietrock, M. & Marcogliese, D.J. (2003) Free-living endohelminth stages: at the mercy of environmental conditions. Trends in Parasitology 19, 293299.Google Scholar
Podlipaev, S.A. (1979) Parthenitae and larva of trematodes in intertidal molluscs of the Eastern Murman. pp. 47101 in Poljanskiy, G.I. (Ed.) Ecological and experimental parasitology. Vol. 2. Leningrad, Leningrad University Press (in Russian).Google Scholar
Polley, L., Hoberg, E. & Kutz, S. (2010) Climate change, parasites and shifting boundaries. Acta Veterinaria Scandinavica 52 (Suppl. 1), S1. Available at http://actavetscand.biomedcentral.com/articles/10.1186/1751-0147-52-S1-S1 (accessed 8 March 2017).Google Scholar
Poulin, R. (2006) Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143151.Google Scholar
Poulin, R. & Mouritsen, K.N. (2003) Large-scale determinants of trematode infections in intertidal gastropods. Marine Ecology Progress Series 254, 187198.Google Scholar
Poulin, R. & Mouritsen, K.N. (2006) Climate change, parasitism and the structure of intertidal ecosystems. Journal of Helminthology 80, 183191.Google Scholar
Prokofiev, V.V. (1999) Influence of temperature and salinity on a life span of cercariae of marine littoral trematodes Cryptocotyle sp. (Heterophyidae), Levinseniella brachysoma and Maritrema subdolum (Microphallidae). Parazitologiya 33, 520526 (in Russian).Google Scholar
Prokofiev, V.V. (2001) Influence of temperature and salinity on a life span of cercariae of marine littoral trematodes Podocotyle atomon (Opecoealidae) and Renicola thaidus (Renicolidae). Parazitologiya 35, 6976 (in Russian).Google Scholar
Prokofiev, V.V. (2006) Strategies of the animal host infection with trematode cercariae: an attempt of analysis in marine coastal and lake ecosystems of northwestern Russia . 545 pp. Dissertation, Zoological Institute of the Russian Academy of Sciences, St. Petersburg (in Russian).Google Scholar
Prokofiev, V.V., Galaktionov, K.V. & Levakin, I.A. (2016) Patterns of parasite transmission in polar seas: daily rhythms of cercarial emergence from intertidal snails. Journal of Sea Research 113, 8598.Google Scholar
Rees, G. (1948) A study of the effect of light, temperature and salinity of the emergence of Cercaria purpurae Lebour from Nucella lapillus . Parasitology 38, 228242.Google Scholar
Regel, K.V. (2005) To the fauna of the cestodes family Hymenolepididae from ducks of Chukotka: Microsomacanthus parasobolevi sp. n. – a widespread distributed parasite of eider ducks. Parazitologiya 39, 146154 (in Russian).Google Scholar
Regel, K.V. & Atrashkevich, G.I. (2008) The role of marine arthropods in the life cycles of the cestodes genus Microsomacanthus at Bering Sea coast of Chukchi Peninsula. First results of the investigation. Parazitologiya 42, 3140 (in Russian).Google Scholar
Rehfisch, M.M. & Crick, H.Q.P. (2003) Predicting the impact of climatic change on Arctic-breeding waders. Wader Study Group Bulletin 100, 8695.Google Scholar
Reid, D.G. (1996) Systematics and evolution of Littorina . 463 pp. London, The Ray Society.Google Scholar
Riel, A. (1975) Effect of trematodes on survival of Nassarius obsoletus (Say). Proceedings of the Malacological Society of London 41, 527528.Google Scholar
Rohr, J.R., Dobson, A.P., Johnson, P.T.J., Kilpatrick, A.M., Paull, S.H., Raffell, Th.R., Ruiz-Moreno, D. & Thomas, M.B. (2011) Frontiers in climate change–disease research. Trends in Ecology and Evolution 26, 270277.Google Scholar
Saville, D.H., Galaktionov, K.V., Irwin, S.W.B. & Malkova, I.I. (1997) Morphological comparison and identification of metacercariae in the ‘pygmaeus’ group of microphallids, parasites of seabirds in western Palearctic regions. Journal of Helminthology 71, 167174.Google Scholar
Sergievsky, S.O., Granovich, A.I. & Mikhailova, N.A. (1986) Effect of trematode infection on the survival of periwinkles Littorina obtusata and L. saxatilis under the conditions of extremely low salinity. Parazitologiya 20, 202207 (in Russian).Google Scholar
Sindermann, C.J. (1960) Ecological studies of marine dermatitis-producing schistosome larvae in Northern New England. Ecology 41, 678684.Google Scholar
Sindermann, C.J. & Farrin, A.E. (1962). Ecological studies of Cryptocotyle lingua (Trematoda: Heterophyidae) whose larvae cause ‘pigment spots’ of marine fish. Ecology 43, 6975.Google Scholar
Skírnisson, K. (2015) Association of helminth infections and food consumption in common eiders Somateria mollissima in Iceland. Journal of Sea Research 104, 4150.Google Scholar
Skírnisson, K. & Galaktionov, K.V. (2002) Life cycles and transmission pattern of seabird digeneans in SW Iceland. Sarsia 87, 144151.Google Scholar
Skírnisson, K. & Galaktionov, K.V. (2014) Um stranddoppu og fuglasníkjudýrin sem hún fóstrar á Ísland [On the mudsnail Ecrobia ventrosa and its digenean larvae infections in Iceland]. Náttúrufræðingurinn 84, 8998 (in Icelandic).Google Scholar
Skírnisson, K., Galaktionov, K.V. & Kozminsky, E.V. (2004) Factors influencing the distribution of digenetic trematode infections in a mudsnail (Hydrobia ventrosa) population inhabiting salt marsh ponds in Iceland. Journal of Parasitology 90, 5059.Google Scholar
Sparks, T.H., Bairlein, F., Bojarinova, J.G., Hüppop, O., Lehikoinen, E., Rainio, K., Sokolov, L.V. & Walker, D. (2005) Examining the total arrival distribution of migratory birds. Global Change Biology 11, 2230.Google Scholar
Steinacher, M., Joos, F., Frölicher, T.L., Plattner, G.-K. & Doney, S.C. (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6, 515533.Google Scholar
Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (Eds) (2013) IPCC, 2013: Climate Change 2013: The Physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1535 pp. Cambridge, Cambridge University Press.Google Scholar
Studer, A. & Poulin, R. (2012) Effects of salinity on an intertidal host–parasite system: is the parasite more sensitive than its host? Journal of Experimental Marine Biology and Ecology 412, 110116.Google Scholar
Studer, A. & Poulin, R. (2013) Cercarial survival in an intertidal trematode: a multifactorial experiment with temperature, salinity and ultraviolet radiation. Parasitology Research 112, 243249.Google Scholar
Studer, A. & Poulin, R. (2014) Analysis of trait mean and variability versus temperature in trematode cercariae: is there scope for adaptation to global warming? International Journal for Parasitology 44, 403413.Google Scholar
Studer, A., Thieltges, D.W. & Poulin, R. (2010) Parasites and global warming: net effects of temperature on an intertidal host–parasite system. Marine Ecology Progress Series 415, 1122.Google Scholar
Studer, A., Lamare, M.D. & Poulin, R. (2012) Effects of ultraviolet radiation on the transmission process of an intertidal trematode parasite. Parasitology 139, 537546.Google Scholar
Studer, A., Poulin, R. & Tompkins, D.M. (2013a) Local effects of a global problem: modelling the risk of parasite-induced mortality in an intertidal trematode–amphipod system. Oecologia 172, 12131222.Google Scholar
Studer, A., Widmann, M., Poulin, R. & Krkošek, M. (2013b) Large scale patterns of trematode parasitism in bivalve host: no evidence for a latitudinal gradient in infection levels. Marine Ecology Progress Series 491, 125135.Google Scholar
Stunkard, H. & Shaw, C. (1931) The effect of dilution of sea water on the activity and longevity of certain marine cercariae, with descriptions of two new species. Biological Bulletin 61, 242271.Google Scholar
Symon, C. (Ed.) (2012) Arctic climate issues 2011: Changes in arctic snow, water, ice and permafrost. SWIPA 2011 Overview Report. 97 pp. Oslo, Norway, Arctic Monitoring and Assessment Programme(AMAP).Google Scholar
Symon, C., Arris, L. & Heal, B. (Eds) (2005) Arctic climate impact assessment (ACIA). 1042 pp. New York, Cambridge University Press.Google Scholar
Tereschenko, V.V., Dvinina, E.A. & Borovaya, L.I. (1985) Reference material on the water temperature in the Barents Sea. 72 pp. Murmansk, PINRO Press (in Russian)Google Scholar
Thieltges, D.W. & Rick, J. (2006) Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Diseases of Aquatic Organisms 73, 6368.Google Scholar
Thieltges, D.W., Hussel, B. & Baekgaard, H. (2006) Endoparasites in common eiders Somateria mollissima from birds killed by an oil spill in the northern Wadden Sea. Journal of Sea Research 55, 301308.Google Scholar
Thieltges, D.W., de Montaudouin, X., Fredensborg, B., Jensen, K.T., Koprivnikar, J. & Poulin, R. (2008) Production of marine trematode cercariae: a potentially overlooked path of energy flow in benthic systems. Marine Ecology Progress Series 372, 147155.Google Scholar
Thieltges, D.W., Ferguson, McN.A.D., Jones, C.S., Noble, L.R. & Poulin, R. (2009) Biogeographical patterns of marine larval trematode parasites in two intermediate snail hosts in Europe. Journal of Biogeography 36, 14931501.Google Scholar
Thomas, F., Renaud, F., de Meeus, T. & Poulin, R. (1998). Manipulation of host behaviour by parasites: ecosystem engineering in the intertidal zone? Proceedings of the Royal Society of London B: Biological Sciences 265, 10911096.Google Scholar
Thompson, A.B. (1985) Profilicollis botulus (Acanthocephala) abundance in the eider duck (Somateria mollissima) on the Ythan estuary, Aberdeenshire. Parasitology 91, 563575.Google Scholar
Threlfall, W. (1968) Studies on helminths parasites of the American herring gull (Larus argentatus Pont.) in Newfoundland. Canadian Journal of Zoology 46, 11191126.Google Scholar
Threlfall, W. (1971) Helminth parasites of alcids in the northwestern North Atlantic. Canadian Journal of Zoology 49, 461466.Google Scholar
Treonis, A.M. & Wall, D.H. (2005) Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integrative and Comparative Biology 45, 741750.Google Scholar
Uspenskaya, A.V. (1963) Parasite fauna of benthic crustaceans of the Barents Sea. 128 pp. Moscow–Leningrad, USSR Academy of Sciences Press (in Russian).Google Scholar
Valiela, I. & Bowen, J.L. (2003) Shifts in winter distribution in birds: effects of global warming and local habitat change. Ambio 32, 476480.Google Scholar
Waltari, E., Hoberg, E.P., Lessa, E.P. & Cook, J.A. (2007) Eastward Ho: phylogeographical perspectives on colonization of hosts and parasites across the Beringian nexus. Journal of Biogeography 34, 561574.Google Scholar
Warelius, K.H. (1993) The effect of intestinal helminths on body condition of prelaying eiders Somateria m. mollissima (L.). Candidate Scientific Thesis, Tromsø, University of Tromsø.Google Scholar
Webster, M.S., Marra, P.P., Haig, S.M., Bensch, S. & Holmes, R.T. (2002) Links between worlds – unraveling migratory connectivity. Trends in Ecology and Evolution 17, 7683.Google Scholar
Węsławski, J.M. & Stempiewicz, L. (1995) Marine environment and wildlife. pp. 3858 in Barr, S. (Ed.) Franz Josef Land. Oslo, Norsk Polarinstitutt.Google Scholar
Węsławski, J.M., Stempiewicz, L. & Galaktionov, K.V. (1994) Summer diet of seabirds from Franz Josef Land archipelago. Polar Research 13, 173181.Google Scholar
Węsławski, J.M., Wiktor, J. Jr & Kotwicki, L. (2010) Increase in biodiversity in the arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Marine Biodiversity 40, 123130.Google Scholar
Węsławski, J.M., Kendall, M.A., Włodarska-Kowalczuk, M., Iken, K., Kędra, M., Legezynska, J. & Sejr, M.K. (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity – observations and predictions. Marine Biodiversity 41, 7185.Google Scholar
Wilson, J.G., Galaktionov, K.V., Sukhotin, A.A., Skírnisson, K., Nikolaev, K.E., Ivanov, M.V., Bustnes, J.O., Saville, D.H. & Regel, K.V. (2013) Factors influencing trematode parasite burdens in mussels (Mytilus spp.) from the North Atlantic Ocean across to the North Pacific. Estuarine, Coastal and Shelf Science 132, 8793.Google Scholar
Wong, P.L. & Anderson, C. (1982) The transmission and development of Cosmocephalus obvelatus (Nematoda: Acuarioidea) of gulls (Laridae). Canadian Journal of Zoology 60, 14261440.Google Scholar