Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T06:44:38.273Z Has data issue: false hasContentIssue false

Characterization of adult Dicrocoelium dendriticum by isoelectric focusing

Published online by Cambridge University Press:  05 June 2009

R. Campo
Affiliation:
Departamento de Sistemas de Producción y Sanidad Animal, Estación Agrícola Experimental, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 788, 24080 León, Spain
M.Y. Manga-González*
Affiliation:
Departamento de Sistemas de Producción y Sanidad Animal, Estación Agrícola Experimental, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 788, 24080 León, Spain
C. González-Lanza
Affiliation:
Departamento de Sistemas de Producción y Sanidad Animal, Estación Agrícola Experimental, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 788, 24080 León, Spain
D. Rollinson
Affiliation:
The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
H. Sandoval
Affiliation:
Departamento de Sistemas de Producción y Sanidad Animal, Estación Agrícola Experimental, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 788, 24080 León, Spain
*
*Author for correspondence. Fax: 34 87 317161

Abstract

Water soluble extracts of 3131 adult specimens of Dicrocoelium dendriticum from cattle, sheep and goats, mainly from León province, were analysed by isoelectric focusing in thin-layer polyacrylamide gels. Activity of the following enzymes was studied: lactate dehydrogenase (LDH, EC 1.1.1.27), glucose phosphate isomerase (GPI, EC 5.3.1.9), phosphoglucomutase (PGM, EC 2.7.5.1), acid phosphatase (AcP, EC 3.1.3.2), α-glycerophosphate dehydrogenase (α-GPDH, EC 1.1.1.8), hydroxybutyrate dehydrogenase (HBDH, EC 1.1.1.30) and malate dehydrogenase (MDH, 1.1.1.37). Five distinct enzyme types were recognized for LDH (pH range 6.30–7.13), GPI (pH 6.13–6.80) and PGM (pH 6.20–6.60) whereas AcP showed three different patterns (pH 5.70–5.92). Weak and diffuse activity was detected for MDH (pH 4.8–6.2) and no activity was observed for α-GPDH and HBDH. In general, little phenotypic variation was observed between worms recovered from a single host, between those from hosts of the same species and between those from hosts of different species, although some enzyme types were found in some animals but not others. Nevertheless, it must be taken into account that most parasites came from sheep and also from a relatively small area in north-west Spain.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. (1986) Analytical electrofocusing in arecholine pH gradients. pp. 5169 in LKB 2117 Multiphor Electrophoresis System laboratory manual.Google Scholar
Avise, J.C. (1974) Systematic value of electrophoretic data. Systematic Zoology 23, 465481.CrossRefGoogle Scholar
Campo, R., Manga-González, M.Y. & Rollinson, D. (1993a) Isoenzymatic profiles of Fasciola hepatica and Dicrocoelium dendriticum (Trematoda) adult specimens. pp. 301. 14th International Conference of the World Association for the Advancement of Veterinary Parasitology, Cambridge.Google Scholar
Campo, R., Manga-González, M.Y., González-Lanza, C. & Díez-Baños, N. (1993b) Infestación experimental de corderos con Dicrocoelium dendriticum (Trematoda): eliminación de huevos y carga parasitaria. Acta Parasitológica Portuguesa 1 (Supl. 1), 2.Google Scholar
Cavani, C., Losi, G., Manfredini, M., Pavoncelli, R.M., Pietrobelli, M. & Restani, R. (1982) Ricerche sull'influenza della dicroceliasi sulle caratteristiche quantitative e qualitative della produzione di latte in pecore. Obiettivi e Documenti Veterinari 3, 5963.Google Scholar
De Bont, J., Vercruysse, J., Southgate, V.R., Rollinson, D. & Kaukas, A. (1994) Cattle schistosomiasis in Zambia. Journal of Helminthology 68, 295299.CrossRefGoogle ScholarPubMed
Eckert, J. & Hertzberg, H. (1994) Parasite control in transhumant situations. Veterinary Parasitology 54, 103125.CrossRefGoogle ScholarPubMed
Ferguson, A. (1980) Biochemical systematics and evolution. Glasgow and London, Blackie.Google Scholar
González-Lanza, C., Manga-González, M.Y. & Del-Pozo-Carnero, P. (1993) Coprological study of the Dicrocoelium dendriticum (Digenea) egg elimination by cattle in high-land areas in León province (NW Spain). Parasitology Research 79, 488491.CrossRefGoogle Scholar
Hedrick, P.W. (1971) An approach to measuring genetic similarity. Evolution 25, 276280.CrossRefGoogle ScholarPubMed
Johnson, M.R. & Hoberg, E.P. (1989) Differentation of Moniezia expansa and Moniezia benedeni (Eucestoda: Cyclophyllidea) by isoelectric focusing. Canadian Journal of Zoology 67, 14711475.CrossRefGoogle Scholar
Lee, C.G. & Zimmerman, G.L. (1993) Banding patterns of Fasciola hepatica and Fasciola gigantica (Trematoda) by isoelectric focusing. Journal of Parasitology 79, 120123.CrossRefGoogle ScholarPubMed
Lee, C.G., Zimmerman, G.L. & Bishop, J.K. (1992) Host influence on the banding profiles of whole-body protein and excretory-secretory product of Fasciola hepatica (Trematoda) by isoelectric focusing. Veterinary Parasitology 41, 5768.CrossRefGoogle ScholarPubMed
León, P., Hermoso, R. & Monteoliva, M. (1986) Isoenzymes of lactate dehydrogenase (EC 1.1.1. 27) in Dicrocoelium dendriticum and Fasciola hepatica (Trematoda). Comparative Biochemistry and Physiology 83B, 159161.Google ScholarPubMed
León-Ortega, P., Monteoliva, M. & Sánchez-Moreno, M. (1988) Fasciola hepatica and Dicrocoelium dendriticum: Isoenzyme patterns of malate dehydrogenase and malic enzyme. Angewandte Parasitologie 29, 173177.Google ScholarPubMed
León, P., Monteoliva, M. & Sánchez-Moreno, M. (1989) Isoenzyme patterns of phosphatases and esterases in Fasciola hepatica and Dicrocoelium dendriticum. Veterinary Parasitology 30, 297304.CrossRefGoogle ScholarPubMed
Manga-González, M.Y. (1987) Some aspects of the biology and helminthofauna of Helicella (Helicella) itala (Linnaeus, 1758) (Mollusca). Natural infection by Dicrocoeliidae (Trematoda). Revista Ibérica de Parasitología Vol. Extraordinario, 131148.Google Scholar
Manga-González, M.Y. (1992) Some land molluscs species involved in the life cycle of Dicrocoelium dendriticum (Trematoda) in the wild in the province of Leon (NW Spain). pp. 248249in Giusti, & Manganelli, (Eds) Abstracts of the 11th International Malacological Congress, Siena.Google Scholar
Manga-González, M.Y. & Rollinson, D. (1986) Preliminary observations on the use of isoelectric focusing of enzymes for the identification of Helicella species (Mollusca, Stylommatophora) from León Province (Spain). Iberus 6, 155165.Google Scholar
Manga-González, M.Y., González-Lanza, C. & Del-Pozo-Carnero, M.P. (1991a) Dynamics of the elimination of Dicrocoelium dendriticum (Trematoda, Digenea) eggs in the faeces of lambs and ewes in the Porma basin (León, NW Spain). Annales de Parasitologie Humaine et Comparée 66, 5761.CrossRefGoogle ScholarPubMed
Manga-González, M.Y., González-Lanza, C., Espadaler, X. & Otero, C. (1991b) Datos preliminares sobre la infestación por Dicrocoelium dendriticum de las especies de hormigas (2° hospedador intermediario) de la cuenca del Porma (León, España). pp. 256in Mas-Coma, S., Esteban, J.G., Bargues, M.D., Valero, M.A. & Galán-Puchades, M.T. (Eds) Parasitología en el Sur-Oeste de Europa. J. Aguilar, S.L. Valencia, Spain.Google Scholar
Oxford, G.S. & Rollinson, D. (1983) Protein polymorphism: adaptative and taxonomic significance. The Systematics Association, Special Volume, 24. London, Academic Press.Google Scholar
Panasyuk, D.I., Kononenko, G.V. & Toropkin, A.A. (1972) Quantitative and qualitative losses of productivity due to dicrocoeliasis of animals (cattle and sheep in USSR), pp. 113114 in Problemy parazitologii. Trudy VII Nauchnoi konferentsii Parazitologov USSR. Part II. Kiev, USSR; Izdatel'stvo ‘Naukova Dumka’.Google Scholar
Rollinson, D. & Southgate, V.R. (1985) Schistosome and snail populations: genetic variability and parasite transmission pp. 91109in Rollinson, D. & Anderson, R.M. (Eds) Ecology and genetics of host parasite interactions. London, Academic Press.Google Scholar
Rollinson, D., Walker, T.K. & Simpson, J.G. (1986) The application of recombinant DNA technology to problems of helminth identification. Parasitology 91 (Suppl.) S53–S71.CrossRefGoogle Scholar
Ross, G.C. (1976) Isoenzymes in Schistosoma spp: LDH, MDH and acid phosphatases separated by isoelectric focusing in polyacrylamide gel. Comparative Biochemistry and Physiology 55B, 343346.Google ScholarPubMed
Sneath, P.H.A. & Sokal, R.R. (1973) Numerical taxonomy: the principles and practice of numerical classifications. San Francisco, W.H. Freeman and Co.Google Scholar
Sokal, R.R. & Rohlf, F.J. (1969) Biometría. Principios y métodos estadísticos en la investigación biológica. Madrid, H. Blume Ediciones.Google Scholar
Southgate, V.R., Rollinson, D., Ross, G.C., Knowles, R.J. & Vercruysse, J. (1985) On Schistosoma curassoni, S. haematobium and S. bovis from Senegal: development in Mesocricetus auratus, compatibility with species of Bulinus and their enzymes. Journal of Natural History 19, 12491267.CrossRefGoogle Scholar
Wright, C.A. & Rollinson, D. (1979) Analysis of enzymes in the Bulinus africanus group (Mollusca:Planorbidae) by isoelectric focusing. Journal of Natural History 13, 263273.CrossRefGoogle Scholar