Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T21:00:35.681Z Has data issue: false hasContentIssue false

First report of Caenorhabditis brenneri (Nematoda: Rhabditida) isolated from the cadaver of Philippinella moellendorffi (Stylommatophora: Ariophantidae), a terrestrial slug in the Philippines

Published online by Cambridge University Press:  04 August 2022

L.B. Dalan
Affiliation:
Department of Biological Science, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Andres Bonifacio, Tibanga, 9200 Iligan City, Philippines FBL-Nematology Research Group, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
M.A.B. Diano
Affiliation:
Department of Biological Science, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Andres Bonifacio, Tibanga, 9200 Iligan City, Philippines FBL-Nematology Research Group, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
I. Tandingan De Ley
Affiliation:
Department of Nematology, University of California-Riverside, Riverside, California 92521, USA
N.H.N. Sumaya*
Affiliation:
Department of Biological Science, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Andres Bonifacio, Tibanga, 9200 Iligan City, Philippines FBL-Nematology Research Group, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
*
Author for correspondence: N.H.N. Sumaya, E-mail: nanettehope.sumaya@g.msuiit.edu.ph

Abstract

Gastropod-associated nematodes have been previously studied and documented worldwide, with some species forming host-specific association as obligate parasites of molluscs while others form intermediate and temporary association. Philippinella moellendorffi from Imelda, Zamboanga Sibugay, Philippines, were collected, washed and maintained in the laboratory until death. Cadavers were placed on nutrient agar to allow nematode proliferation. Nematode pure culture was obtained using one gravid female for propagation. Morphology and molecular analyses (18S ribosomal DNA (rDNA) and D2–D3 expansion segments of 28S rDNA) were employed as diagnostic tools in identifying the nematode species isolated from P. moellendorffi. The newly isolated nematode was identified as Caenorhabditis brenneri, thus designated as C. brenneri strain IZSP from the Philippines. This is the first record of C. brenneri isolated from the terrestrial slug P. moellendorffi.

Type
Short Communication
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, SF, Gish, W, Miller, W, Myers, EW and Lipman, DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Baird, SE (1999) Natural and experimental associations of Caenorhabditis remanei with Trachelipus rathkii and other terrestrial isopods. Nematology 1, 471475.CrossRefGoogle Scholar
Berman, JJ (2019) Chapter 8 - Changing how we think about infectious diseases. in Berman, JJ (Ed.) Taxonomic guide to infectious diseases (Second Edition), Academic Press.Google Scholar
Blaxter, M and Denver, DR (2012) The worm in the world and the world in the worm. BioMed Central Biology 10, 57.Google ScholarPubMed
De Grisse, AT (1969) Redescription ou modiifications de quelques techniques utilisées dans l'etude des nematode phytoparasitaires. Mededelingen Rijksfakulteit Landbouwwetenschappen Gent 34, 351369.Google Scholar
De Ley, P and Mundo-Ocampo, M (2004) The cultivation of nematodes. pp. 541619 in Chen, ZX, Chen, SY and Dickson, DW (Eds) Nematology: advance and perspectives, Vol. 1. Tsinghua, China, Tsinghua University Press.Google Scholar
Dey, A, Chan, CK, Thomas, CG and Cutter, AD (2013) Molecular hyperdiversity defines populations of the nematode Caenorhabditis brenneri. Proceedings of the National Academy of Sciences 110, 1105611060.CrossRefGoogle ScholarPubMed
Diano, MA, Dalan, L, Singh, PR and Sumaya, NH (2022) First report, morphological and molecular characterization of Caenorhabditis brenneri (Nematoda: Rhabditidae) isolated from the giant African land snail Achatina fulica (Gastropoda: Achatinidae). Biologia 77, 469478.CrossRefGoogle Scholar
Félix, M and Braendle, C (2010) The natural history of Caenorhabditis elegans. Current Biology 20, R965R969.CrossRefGoogle ScholarPubMed
Félix, M and Duveau, F (2012) Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BioMed Central Biology 10, 59.Google ScholarPubMed
Fitch, DH, Emmons, SW and Baird, SE (1994) Caenorhabditis vulgaris sp. n. (Nematoda: Rhabditidae): s necromenic associate of pill bugs and snails. Nematologica 40, 111.10.1163/003525994X00012CrossRefGoogle Scholar
Gimond, C, Poullet, N and Braendle, C (2022) Isolating Caenorhabditis elegans from the natural habitat. pp. 283292 in Haspel, G and Hart, AC (Eds) C. elegans. Methods in Molecular Biology, vol 2468. New York, NY, Humana https://doi.org/10.1007/978-1-0716-2181-3_15.Google Scholar
Guerrero, R, Rincon-Orozco, B and Delgado, NU (2018) Achatina fulica (Mollusca: Achatinidae) naturally infected with Caenorhabditis briggsae (Dougherty and Nigon, 1949) (Nematoda: Rhabditidae). Journal of Parasitology 104, 679684.CrossRefGoogle Scholar
Hong, RL, Villwock, A and Sommer, RJ (2005) Cultivation of the rhabditid Poikilolaimus oxycercus as a laboratory nematode for genetic analyses. Journal of Experimental Zoology Part A: Comparative Experimental Biology 303, 742760.CrossRefGoogle ScholarPubMed
Huelsenbeck, JP and Ronquist, F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.CrossRefGoogle ScholarPubMed
Kiontke, K and Sudhaus, W (2006) Ecology of Caenorhabditis elegans species, Wormbook: the online review. Available at: https://www.ncbi.nlm.nih.gov/books/NBK19723/, 26 July 2022.Google Scholar
Laznik, Z, Ross, JL, Toth, T, Lakatos, T, Vidrih, M and Trdan, S (2009) First record of the nematode Alloionema appendiculatum Schneider (Rhabditida: Alloionematidae) in Arionidae slugs in Slovenia. Russian Journal of Nematology 17, 145147.Google Scholar
Luong, LT and Mathot, KJ (2019) Facultative parasites as evolutionary stepping-stones towards parasitic lifestyles. Biology Letters 15, 20190058.10.1098/rsbl.2019.0058CrossRefGoogle ScholarPubMed
Morand, S, Wilson, MJ and Glen, DM (2004) Nematodes (Nematoda) parasitic in terrestrial gastropods. pp. 525557 in Barker, GM (Ed) Natural Enemies of Terrestrial Molluscs. UK, CABI Publishing.CrossRefGoogle Scholar
Mwangi, J, Gichuki, C, Wanjohi, W, Runo, S and Maina, P (2016) Sequence variation in the rDNA region of root knot nematodes (Meloidogynr spp) infecting indigenous leafy vegetables in Kisii and Transmara subcounties, Kenya. Annual Research and Review in Biology 9, 1107.CrossRefGoogle Scholar
Nunn, G (1992) Nematode molecular evolution. PhD dissertation, University of Nottingham, Nottingham, UK.Google Scholar
Petersen, C, Hermann, RJ, Barg, M, Schalkowski, R, Dirksen, P, Barbosa, C and Schulenburg, H (2015) Travelling at a slug's pace: possible invertebrate vectors of Caenorhabditis nematodes. BioMed Central Ecology 15, 19.Google Scholar
Schurkman, J, Dodge, C, Mc Donnell, R, Tandingan De Ley, I and Dillman, AR (2022) Lethality of Phasmarhabditis spp. (P. hermaphrodita, P. californica, and P. papillosa) nematodes to the grey field slug Deroceras reticulatum on Canna Lilies in a Lath House. Agronomy 12, 20.CrossRefGoogle Scholar
Seinhorst, J (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica 4, 6769.CrossRefGoogle Scholar
Shinohara, T (1960) Studies on Rhabditis (Nematoda, Rhabditidae) (Japan). Kurume Medical Journal 23, 27772819.Google Scholar
Sudhaus, W (1974) Zur Systematic, Verbreitung, Okologie und Biologie neuer und wenig bekannter Rhabditiden (Nematoda). Zoologische Jahrbücher Abteilung für Systematik Ökologie und Geographie der Tiere 101, 417465.Google Scholar
Sudhaus, W (2018) Dispersion of nematodes (Rhabditida) in the guts of slugs and snails. Soil Organisms 90, 101114.Google Scholar
Sudhaus, W and Kiontke, K (2007) Comparison of the cryptic nematode species Caenorhabditis brenneri sp. n. and C. remanei (Nematoda: Rhabditidae) with the stem species pattern of the Caenorhabditis Elegans group. Zootaxa 1456, 4562.CrossRefGoogle Scholar
Tamura, K, Stecher, G and Kumar, S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38, 30223027.CrossRefGoogle ScholarPubMed
Tandingan De Ley, I, McDonnell, RD, Lopez, S, Paine, TD and De Ley, P (2014) Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae), a potential biocontrol agent isolated for the first time from invasive slugs in North America. Nematology 16, 11291138.CrossRefGoogle Scholar
Ye, W and Giblin-Davis, RM (2013) Molecular characterization and development of real-time PCR assay for pine-wood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). Public Library of Science ONE 8, e78804.Google Scholar
Yokoo, T and Okabe, K (1968) Two new species of genus Rhabditis (Nematoda: Rhabditidae) found in the intermediate host of Schistosoma japonica, Oncomelania hupensis nosophora and Oncomelania hupensis formosana. Agricultural Bulletin of the Saga University 25, 6978.Google Scholar