Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T04:31:45.420Z Has data issue: false hasContentIssue false

The helminth community of the wood mouse Apodemus sylvaticus in a Mediterranean ecosystem in regeneration ten years after a wildfire

Published online by Cambridge University Press:  07 July 2009

M.V. Fuentes*
Affiliation:
Departament de Parasitologia, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100Burjassot, València, Spain
S. Sainz-Elipe
Affiliation:
Departament de Parasitologia, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100Burjassot, València, Spain
S. Sáez-Durán
Affiliation:
Departament de Parasitologia, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100Burjassot, València, Spain
M.T. Galán-Puchades
Affiliation:
Departament de Parasitologia, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100Burjassot, València, Spain
*
*Fax: +34 96 354 47 69 E-mail: mario.v.fuentes@uv.es

Abstract

This study was carried out 10 years after a wildfire in the Spanish Serra Calderona Natural Park, following a previous analysis comprising the first 5 years after the fire. Its primary aim was to elucidate the impact of this perturbation on the population biology of the wood mouse Apodemus sylvaticus, and the repercussions on its helminth community in this regenerating Mediterranean ecosystem. Second, confirmation of the ability of the parasites to tolerate environmental stressors and the effects on their transmission strategies was sought. Five hundred and sixty-four individuals of A. sylvaticus were studied in a 9-year period, from the second to the tenth post-fire year: 408 mice from the burned area and 156 from the control – non-burned – area. The helminth community for both areas and the effect of intrinsic (host age and sex) and extrinsic (site, period and year of capture) factors on helminth prevalence, abundance and diversity, and species richness were analysed. Our findings show that, after an environmental disaster, the behaviour of helminth species might be related to their pre-catastrophe presence, their biological cycles, the host's immunological condition, the change of host dynamics, the direct effects of the perturbation, and the processes related to the re-establishment of the ecological balance of a devastated ecosystem.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Madi, M.A., Behnke, J.M., Lewis, J.W. & Gilbert, F.S. (2000) Seasonal and site specific variation in the component community structure of intestinal helminths from Apodemus sylvaticus from three contrasting habitats in south-east England. Journal of Helminthology 74, 715.CrossRefGoogle ScholarPubMed
Arneberg, P. (2001) An ecological law and its macroecological consequences as revealed by studies of relationships between host densities and parasite prevalence. Ecography 24, 352358.CrossRefGoogle Scholar
Arneberg, P., Skorping, A., Grenfell, B. & Read, A.F. (1998) Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London, Ser. B 265, 12831289.CrossRefGoogle Scholar
Aznar, F.J., Badillo, F.J. & Raga, J.A. (1998) Gastrointestinal helminths of loggerhead turtles (Caretta caretta) from the western Mediterranean: constraints on community structure. Journal of Parasitology 84, 474479.CrossRefGoogle ScholarPubMed
Behnke, J.M., Gilbert, F.S., Abu-Madi, M.A. & Lewis, J.W. (2005) Do the helminth parasites of wood mice interact? Journal of Animal Ecology 74, 982993.CrossRefGoogle Scholar
Berger, W.H. & Parker, F.L. (1970) Diverstity of planktonic Foraminifera in deep sea sediments. Science 168, 13451347.CrossRefGoogle Scholar
Bush, A.O. (1973) An ecological analysis of the helminth parasites of the white ibis in Florida. MS thesis, University of Florida.Google Scholar
Bush, A.O., Aho, J.M. & Kennedy, C.R. (1990) Ecological versus phylogenetic determinants of helminth parasite community richness. Evolutionary Ecology 4, 120.CrossRefGoogle Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostal, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Combes, C. (2001) Parasitism. The ecology and evolution of intimate interactions. Chicago, University of Chicago Press. 552 pp.Google Scholar
Dobson, A.P. (1988) The population biology of parasite-induced changes in host behaviour. Quarterly Review of Biology 63, 139165.CrossRefGoogle Scholar
Dobson, A.P. & Hudson, P.J. (1992) Regulation and stability of a free-living host-parasite system: Trychostrongylus tenuis in red grouse. II. Population models. Journal of Animal Ecology 61, 487498.CrossRefGoogle Scholar
Eira, C., Torres, J., Vingada, J. & Miquel, J. (2006) Ecological aspects influencing the helminth community of the wood mouse Apodemus sylvaticus in Dunas de Mira, Portugal. Acta Parasitologica 51, 300308.CrossRefGoogle Scholar
Feliu, C., Renaud, F., Catzeflis, F., Hugot, J.P., Durand, P. & Morand, S. (1997) A comparative analysis of parasite species richness of Iberian rodents. Parasitology 115, 453466.CrossRefGoogle ScholarPubMed
Fuentes, M.V., Galán-Puchades, M.T. & Cerezuela, A.M. (1998) Insectívoros y roedores de la Serra Calderona (Comunitat Valenciana). Dinámicas de recolonización y estudio helmintoecológico postincendio. Galemys 10, 3758.Google Scholar
Fuentes, M.V., Cerezuela, A.M. & Galán-Puchades, M.T. (2000) A helminthological survey of small mammals (insectivores and rodents) in the Serra Calderona mountains (Valencian Community, Spain). Research and Reviews in Parasitology 60, 2535.Google Scholar
Fuentes, M.V., Sáez, S., Trelis, M., Galán-Puchades, M.T. & Esteban, J.G. (2004) The helminth community of the wood mouse, Apodemus sylvaticus, in the Sierra Espuña, Murcia, Spain. Journal of Helminthology 78, 219223.CrossRefGoogle ScholarPubMed
Fuentes, M.V., Sainz-Elipe, S. & Galán-Puchades, M.T. (2005) The helminth community of the common shrew in a post-fire regenerated Mediterranean ecosystem. Helminthologia 42, 3134.Google Scholar
Fuentes, M.V., Sainz-Elipe, S. & Galán-Puchades, M.T. (2007) Ecological study of the wood mouse helminth community in a burned Mediterranean ecosystem in regeneration five years after a wildfire. Acta Parasitologica 52, 403413.CrossRefGoogle Scholar
Galán-Puchades, M.T. & Fuentes, M.V. (1996) Parasites and fire. Parasitology Today 12, 327.CrossRefGoogle ScholarPubMed
Galán-Puchades, M.T., Fuentes, M.V., Cerezuela, A.M., Fons, R. & Mas-coma, S. (1998) Host/parasite post-fire responses: the helminths of Apodemus sylvaticus (Rodentia, Muridae) as bioindicators of its movements after fire. Miscel·lània Zoològica 21, 3543.Google Scholar
Galán-Puchades, M.T., Fuentes, M.V., Cerezuela, A.M., Fons, R. & Mas-Coma, S. (1999) A proposed methodology for the use of helminth parasites as biological tags in the study of post-fire ecosystem regeneration processes. Vie et Milieu 49, 4550.Google Scholar
Krasnov, B.R., Poulin, R. & Morand, S. (2006) Patterns of macroparasite diversity in small mammals. pp. 197231in Morand, S., Krasnov, B.R. & Poulin, R. (Eds) Micromammals and macroparasites. From evolutionary ecology to management. Tokyo, Springer-Verlag.CrossRefGoogle Scholar
Lefkovitch, L.P. (1966) An index of spatial distribution. Research in Population Ecology 8, 8992.CrossRefGoogle Scholar
Lewis, J.W. (1968) Studies on the helminth parasites of the long-tailed field mouse, Apodemus sylvaticus sylvaticus from Wales. Journal of Zoology, London 154, 287312.CrossRefGoogle Scholar
MacKenzie, K. & Abaunza, P. (1998) Parasites as biological tags for stock discrimination of marine fish: a guide to procedures and methods. Fisheries Research 38, 4556.CrossRefGoogle Scholar
Magurran, A.E. (1988) Ecological diversity and its measurement. London, Croom Helm. 179 pp.CrossRefGoogle Scholar
May, R.M. (1975) Patterns of species abundance and diversity. pp. 81120in Cody, M.L. & Diamond, J.M. (Eds) Ecology and evolution of communities. Cambridge, Massachusetts, Harvard University Press.Google Scholar
Morand, S. (2000) Wormy world: comparative tests of theoretical hypotheses on parasite species richness. pp. 6379in Poulin, R., Morand, S. & Skorping, A. (Eds) Evolutionary biology of host-parasite relationships: theory meets reality. Amsterdam, Elsevier.Google Scholar
Morand, S. & Krasnov, B. (2008) Why apply ecological laws to epidemiology? Trends in Parasitology 24, 304309.CrossRefGoogle ScholarPubMed
Pence, D.B. & Eason, S. (1980) Comparison of the helminth faunas of two sympatric top carnivores from the Rolling Plains of Texas. Journal of Parasitology 66, 115120.CrossRefGoogle ScholarPubMed
Pielou, E.C. (1969) An introduction to mathematical ecology. New York, John Wiley & Sons. 250 pp.Google Scholar
Pielou, E.C. (1975) Ecological diversity. New York, John Wiley & Sons. 165 pp.Google Scholar
Portolés, E., Granel, P. & Esteban, J.G. (2000) Helminthofaunistic analysis of Apodemus sylvaticus (Linnaeus, 1758) (Rodentia: Muridae) from the Albufera Natural Park (Valencia, Spain). Research and Reviews in Parasitology 60, 1723.Google Scholar
Poulin, R. (1993) The disparity between observed and uniform distributions: a new look at parasite aggregation. International Journal for Parasitology 23, 937944.CrossRefGoogle Scholar
Poulin, R. (1998) Evolutionary ecology of parasites: from individuals to communities. London, Chapman and Hall. 212 pp.Google Scholar
Rózsa, L., Reiczigel, J. & Majoros, G. (2000) Quantifying parasites in samples of hosts. Journal of Parasitology 86, 228232.CrossRefGoogle ScholarPubMed
Sainz-Elipe, S., Galán-Puchades, M.T. & Fuentes, M.V. (2007) The helminth community of the Mediterranean mouse, Mus spretus, in a post-fire regenerated Mediterranean ecosystem. Helminthologia 44, 107111.CrossRefGoogle Scholar
Shaw, D.J. & Dobson, A.P. (1995) Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, S111S133.CrossRefGoogle ScholarPubMed
Simpson, E.H. (1949) Measurement of diversity. Nature 163, 688.CrossRefGoogle Scholar
Sokal, R.R. & Rohlf, F.J. (1981) Biometry. The principles and practice of statistics in biological research. 2nd edn.New York, W.H. Freeman and Co. 859 pp.Google Scholar
Wilson, K., Bjørnstad, O.N., Dobson, A.P., Merler, S., Poglayen, G., Randolph, S.E, Read, A.F. & Skorping, A. (2001) Heterogeneities in macroparasite infections: patterns and processes. pp. 644in Hudson, P.J., Rizzoli, A., Grenfell, B.T., Heesterbeek, H. & Dobson, A.P. (Eds) The ecology of wildlife diseases. Oxford, Oxford University Press.Google Scholar