Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T04:36:14.007Z Has data issue: false hasContentIssue false

A spectral sequence for the homology of a finite algebraic delooping

Published online by Cambridge University Press:  20 May 2014

Birgit Richter
Affiliation:
Fachbereich Mathematik der Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany, birgit.richter@uni-hamburg.de
Stephanie Ziegenhagen
Affiliation:
Fachbereich Mathematik der Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany, stephanie.ziegenhagen@uni-hamburg.de
Get access

Abstract

In the world of chain complexes En-algebras are the analogues of based n-fold loop spaces in the category of topological spaces. Fresse showed that operadic En-homology of an En-algebra computes the homology of an n-fold algebraic delooping. The aim of this paper is to construct two spectral sequences for calculating these homology groups and to treat some concrete classes of examples such as Hochschild cochains, graded polynomial algebras and chains on iterated loop spaces. In characteristic zero we gain an identification of the summands in Pirashvili's Hodge decomposition of higher order Hochschild homology in terms of derived functors of indecomposables of Gerstenhaber algebras and as the homology of exterior and symmetric powers of derived Kähler differentials.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An71.Anderson, Donald W., Chain functors and homology theories, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971), Lecture Notes in Math. 249, Springer, Berlin, (1971), 112.Google Scholar
B∞.Bauer, Kristine, Higher Order Hochschild Homology and Its Decompositions, preprint available at http://hopf.math.purdue.edu//BauerK/bauer1.pdfGoogle Scholar
BS92.Blanc, David, Stover, ChristopherA generalized Grothendieck spectral sequence, Adams Memorial Symposium on Algebraic Topology, 1 (Manchester, 1990), London Math. Soc. Lecture Note Ser. 175, Cambridge Univ. Press (1992), 145161.Google Scholar
C54.Cartan, Henri, Séminaire Henri Cartan 1954/55. Algèbre d'Eilenberg MacLane et homotopie, Secrétariat de Mathématique (1956); electronically available at numdam http://www.numdam.org/?lang=en.Google Scholar
CLM76.Cohen, Frederick R.; Lada, Thomas J.; May, J. Peter, The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer-Verlag, Berlin-New York (1976), vii+490 pp.Google Scholar
DKS93.Dwyer, William G., Kan, Daniel M., Stover, Christopher R., An E2-model category structure for pointed simplicial spaces, Journal of Pure and Applied Algebra 90 (1993), 137152.Google Scholar
F09.Fresse, Benoit, Modules over operads and functors, Lecture Notes in Mathematics 1967, Springer-Verlag, Berlin (2009), x+308 ppGoogle Scholar
F11a.Fresse, Benoit, Iterated bar complexes of E-infinity algebras and homology theories, Alg. Geom. Topol. 11 (2011), 747838.Google Scholar
F11b.Fresse, Benoit, Koszul duality of En-operads, Selecta Math. (N.S.) 17(2) (2011), 363434.Google Scholar
Fu86.Fuks, D. B., Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York (1986) xii+339Google Scholar
GM07.Gaudens, Gerald, Menichi, Luc, Batalin-Vilkovisky algebras and the J-homomorphism, Topology Appl. 156(2) (2008), 365374.Google Scholar
Ge63.Gerstenhaber, Murray, The cohomology structure of an associative ring, Ann. of Math. 78(2) (1963), 267288.Google Scholar
Gi08.Ginot, Grégory, Higher order Hochschild cohomology, C. R. Math. Acad. Sci. Paris 346(1-2) (2008), 510.Google Scholar
Go90.Goerss, Paul G., On the André-Quillen cohomology of commutative 2-algebras, Astérisque 186 (1990), 169 pp.Google Scholar
KM95.Kriz, Igor, May, J. Peter, Operads, algebras, modules and motives, Astérisque 233 (1995), iv+145pp.Google Scholar
LV∞.Lambrechts, Pascal, Volic, Ismar, Formality of the little N-disks operad, to appear in: Memoirs of the AMS.Google Scholar
LR11.Livernet, Muriel, Richter, Birgit, An interpretation of En-homology as functor homology, Mathematische Zeitschrift 269(1) 2011, 193219.Google Scholar
Lo97.Loday, Jean-Louis, Cyclic Homology, Second edition, Grundlehren der Mathematischen Wissenschaften 301, Springer-Verlag, Berlin (1998) xx+513 pp.Google Scholar
Ma66.May, J. Peter, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123146.Google Scholar
Ma72.May, J. Peter, The geometry of iterated loop spaces, Lectures Notes in Mathematics 271, Springer-Verlag, Berlin-New York (1972), viii+175 pp.Google Scholar
MS02.McClure, James, Smith, Jeffrey, A solution of Deligne's Hochschild cohomology conjecture, Recent progress in homotopy theory (Baltimore, MD, 2000), Con-temp. Math. 293, Amer. Math. Soc., Providence, RI (2002), 153193.Google Scholar
Mi78.Miller, Haynes, A spectral sequence for the homology of an infinite delooping, Pacific J. Math. 79(1) (1978), 139155.Google Scholar
Mi∞.Miller, Haynes, Some notes on the case p = 2, n = 1 of Fred Cohen's thesis, available at http://www.math.mit.edu/hrm/papers/fred.pdfGoogle Scholar
MM65.Milnor, John W., Moore, John C., On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211264.Google Scholar
P00.Pirashvili, Teimuraz, Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup. (4) 33(2) (2000), 151179.Google Scholar
Pr70.Priddy, Stewart B., Primary cohomology operations for simplicial Lie algebras, Illinois J. Math. 14 (1970), 585612.Google Scholar
Q67.Quillen, Daniel G., Homotopical algebra, Lecture Notes in Mathematics 43, Springer-Verlag, Berlin-New York (1967), iv+156 pp.Google Scholar
Q70.Quillen, Daniel G., On the (co-)homology of commutative rings, Applications of Categorical Algebra, Proc. Sympos. Pure Math. XVII, New York 1968, Amer. Math. Soc., Providence, RI (1970), 6587.Google Scholar
Re86.Reutenauer, Christophe, Theorem of Poincaré-Birkhoff-Witt, logarithm and symmetric group representations of degrees equal to Stirling numbers, Lecture Notes in Mathematics 1234, Springer-Verlag (1986), 265284.Google Scholar
Ri01.Richter, Birgit, Taylor towers of Gamma-modules, Annales de l'Institut Fourier 51(4) (2001), 9951023.Google Scholar
RS65.Rothenberg, Melvin G., Steenrod, Norman E., The cohomology of classifying spaces of H-spaces, Bull. Amer. Math. Soc. 71 (1965), 872875.Google Scholar
W94.Weibel, Charles, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge (1994), xiv+450 pp.Google Scholar