Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:25:12.406Z Has data issue: false hasContentIssue false

Expression of carbonic anhydrase isoenzymes in the developing endolymphatic sac of the human fetus and the mouse embryo

Published online by Cambridge University Press:  29 June 2007

Hiroshi Yamashita*
Affiliation:
Department of Otolaryngology, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
Dan Bagger-Sjöbäck
Affiliation:
Department of Otolaryngology, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
Toru Sekitani
Affiliation:
Department of Otolaryngology, Yamaguchi University School of Medicine, Ube, Japan.
*
Hiroshi Yamashita, M.D., Department of Otolaryngology, Yamaguchi University School of Medicine, Ube, Yamaguchi 755, Japan.

Abstract

The distribution of carbonic anhydrase isoenzymes (CA) was analyzed in the developing endolymphatic sac (ES) of the mouse embryo and human fetus using immunohistochemical method. The primordial ES epithelium was labelled with CA I and CA II, but was weakly labelled with CA III and CA V. In the thirteenth and fifteenth gestational day (GD) mice, the ES epithelium was positive for CA I and CA II. After seventeenth GD, the ES epithelium was however weakly positive for CA I and CA II. In the 11 and 12 week old human fetus, the ES epithelium was strongly labelled with CA I and CA II. In the 16 week old human fetus, the ES epithelium was however weakly positive for CA I and CA II. These results suggest that the fetal ES has an activity of CA and plays a role in the otoconial formation especially in the early stage during evolution.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balsamo, G., De Vincentiis, M., Marmo, E., Parisi, G. (1969) The effect of 4, 5-dichlor-l, 3-benzendisulfonamide and of 4, 5-dichlor-l, 3-benzendisulfonylaniline on the morphogenesis of the otoliths in the chick embryo. Experientia, 25: 292293.Google Scholar
De Vincentiis, M., Marmo, F. (1966) The 45Ca turnover in the membrane labyrinth of chick embryos during development. Journal of Embryology and Experimental Morphology, 15: 349354.Google ScholarPubMed
De Vincentiis, M., Marmo, F. (1968) Inhibition of the morphogenesis of the otoliths in the chick embryo in the presence of carbonic anhydrase inhibitors. Experientia, 24: 818820.CrossRefGoogle ScholarPubMed
Dodgson, S. J., Foster, R. E., Storey, B. T., Mela, L. (1980) Mitochondrial carbonic anhydrase. Proceedings National Academy of Sciences USA, 77: 55625566.CrossRefGoogle ScholarPubMed
Erulkar, S. D., Maren, T. H. (1961) Carbonic anhydrase and the inner ear. Nature, 189: 459460.CrossRefGoogle ScholarPubMed
Fernley, R. T., Wright, R. D., Coghlan, J. P. (1979) A novel carbonic anhydrase from the ovine parotid gland. FEBS Letters, 105: 299302.CrossRefGoogle ScholarPubMed
Hsu, C. J., Nomura, Y. (1985) Carbonic anhydrase activity in the inner ear. Acta Otolaryngologica, Supplement 418: 142.Google ScholarPubMed
Imoto, T., Rask-Andersen, H., Bagger-Sjöbäck, D. (1983) The role of the endolymphatic sac in the statoconal formation and degradation. Acta Otolaryngologica, 96: 227235.CrossRefGoogle ScholarPubMed
Laurila, A. L., Parvinen, E. K., Slot, J. W., Väänänen, H. K. (1989) Consecutive expression of carbonic anhydrase isoenzymes during development of rat liver and skeletal muscle differentiation. Journal of Histochemistry and Cytochemistry, 37: 13751382.Google Scholar
Lim, D. J., Karabinas, C., Trune, D. R. (1983) Histochemical localization of carbonic anhydrase in the inner ear. American Journal of Otolaryngology, 4: 3342.Google Scholar
Marmo, F. (1966) Carbonic anhydrase in the membranous labyrinth of chick embryos during development. Acta Embryologica et Morphologica Experimenta, 9: 118126.Google Scholar
Purichia, N., Erway, L. C. (1972) Effects of dichlorophenamide, zinc and manganese on otolith development in mice. Developmental Biology, 27: 395405.CrossRefGoogle ScholarPubMed
Takumida, M., Bagger-Sjöbäck, D., Rask-Andersen, H. (1988) Ultrastructural localization of carbonic anhydrase and its possible role in the endolymphatic sac. Journal of Oto-Rhino-Laryngology, 50: 170175.Google Scholar
Takumida, M., Bagger-Sjöbäck, D., Wersall, J., Harada, Y. (1989) Ultrastructural localization of carbonic anhydrase in the vestibular end organs of the guinea pig. Archives of Otorhinolaryngology, 246: 5660.CrossRefGoogle ScholarPubMed
Tashian, R. E., Hewett-Emmett, D., Goodman, M. (1983) On the evolution and genetics of carbonic anhydrase I, II and III. In Rattazzi, M. C., Scandalios, J. G., Whitt, G. S. (eds.) Isozymes: current topics in biological and medical research, Vol. 7 AR Liss, New York, p. 79100.Google Scholar
Väänänen, H. K., Kumpulainen, T., Korhonen, L. K. (1982) Carbonic anhydrase in the type I skeletal muscle fibres of the rat. Journal of Histochemistry and Cytochemistry, 30: 1109–111.Google Scholar
Väänänen, H. K., Paloniemi, M., Vuori, J. (1985) Purification and localization of human carbonic anhydrase III. Typing of skeletal muscle fibres in paraffin embedded sections. Histochemistry, 83: 231235.CrossRefGoogle ScholarPubMed
Vasquez, C. S. (1955) Calcareous formations in the endolymphatic sac of chick embryos. Annals of Otology, Rhinology and Laryngology, 64: 10191024.CrossRefGoogle Scholar
Watanbe, K., Ogawa, A. (1984) Carbonic anhydrase activity in stria vascularis and dark cells in vestibular labyrinth. Annals of Otology, Rhinology and Laryngology, 93: 262266.Google Scholar
Whitney, P. L., Briggle, T. V. (1982) Membrane-associated carbonic anhydrase purified from bovine lung. Journal of Biological Chemistry, 257: 1205612059.CrossRefGoogle ScholarPubMed