Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:05:44.582Z Has data issue: false hasContentIssue false

Abnormal grain growth of sputtered CuNi(Mn) thin films

Published online by Cambridge University Press:  31 January 2011

W. Brückner
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
V. Weihnacht
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
W. Pitschke
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
J. Thomas
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
S. Baunack
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
Get access

Abstract

The evolution in both stress and microstructure was investigated on sputtered Cu0.57Ni0.42Mn0.01 thin films of 400 nm thickness during the first temperature cycle up to 550 °C. Samples from stress–temperature measurements up to various maximum temperatures were analyzed by x-ray diffraction, scanning and transmission electron microscopy, and Auger electron spectroscopy. The columnar grains with lateral diameters of about 20 nm in the as-deposited state coarsen to about 400 nm above 300 °C. Probably due to the impurity (Mn) drag effect, the coarsening occurs by abnormal grain growth rather than by normal grain growth, starting near the film–substrate interface. The stress development results from a combination of densification due to grain growth and plastic stress relaxation.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nishino, I., Ichinose, Y., Sorimachi, Y., and Tsubata, I., Int. J. Hybrid Microelectron. 8, 18 (1985).Google Scholar
2.Kiyokawa, H., Yonezawa, S., Horita, K., Unishi, T., and Taka-shima, M., Denki Kagaku oyobi Kogyo Butsuri Kagaku 63, 648 (1995).Google Scholar
3.Brückner, W., Baunack, S., Elefant, D., and Reiss, G., J. Appl. Phys. 79, 8516 (1996).CrossRefGoogle Scholar
4.Berlicki, T.H., Osadnik, S.J., and Prociow, E.L., Vide: Sci. Tech. Appl. 279 (suppl. issue), 221 (1996).Google Scholar
5.Doerner, M.F. and Nix, W.D., CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).CrossRefGoogle Scholar
6.Thompson, C.V., J. Appl. Phys. 58, 763 (1985).CrossRefGoogle Scholar
7.Venkatraman, R., Bravman, J.C., Nix, W.D., Davies, P.W., Flinn, P.A., and Fraser, D.B., J. Electron. Mater. 19, 1231 (1990).CrossRefGoogle Scholar
8.Keller, R-M., Sigle, W., Baker, S.P., Kraft, D., and Arzt, E., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 221.Google Scholar
9.Thouless, M.D., Gupta, J., and Harper, J.M.E, J. Mater. Res. 8, 1845 (1993).Google Scholar
10.Volkert, C.A., Alofs, C.F., and Liefting, J.R., J. Mater. Res. 9, 1147 (1994).CrossRefGoogle Scholar
11.Venkatraman, R., in Materials Reliability in Microelectronics IV, edited by Børgesen, P., Filter, W., Sanches, J.E. Jr, Rodbell, K.P., and Coburn, J.C. (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 215.Google Scholar
12.Bader, S., Kalaugher, E.M., and Arzt, E., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 435.Google Scholar
13.Witvrouw, A., Proost, J., Deweerdt, B., Roussel, Ph., and Maex, K., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 441.Google Scholar
14.Keller, R-M. Ph.D. Thesis, University of Stuttgart, Germany, 1996.Google Scholar
15.Brückner, W. and Weihnacht, V., J. Appl. Phys. 85, 3602 (1999).CrossRefGoogle Scholar
16.Informationsdruck, Kupfer-Nickel-Legierungen: Eigenschaften, Bearbeitung, Anwendungen (Deutsches Kupferinstitut, Düssel-dorf, Germany, 1992), p. 3.Google Scholar
17.Brückner, W. and Griessmann, H., Rev. Sci. Instrum. 69, 3662 (1998).CrossRefGoogle Scholar
18.Kurokawa, A., Khan, H.J., and Shimizu, R., Surf. Sci. 255, 120 (1991).Google Scholar
19.Mazurowski, J. and Dowben, P.A., Surface Segregation Phenomena, edited by Dowben, P.A. and Miller, A. (CRC Press, Boca Raton, FL, 1990), p. 365.Google Scholar
20.Roos, W.D., van Wyk, G.N., and du Plessis, J., Surf. Interface Anal. 20, 95 (1993).CrossRefGoogle Scholar
21.Monnier, R., Philos. Mag. B 75, 67 (1997).CrossRefGoogle Scholar
22.Brückner, W., Pitschke, W., Baunack, S., and Thomas, J., J. Mater. Res. 14, 1286 (1999).Google Scholar
23.Maniguet, L., Ignat, M., Dupeux, M., Bacmann, J.J., and Normandon, Ph., in Materials Reliability in Microelectronics III, edited by Rodbell, K., Filter, B., Frost, H., and Ho, P. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 217.Google Scholar
24.Brückner, W., Phys. Status Solidi A 148, K89 (1995).Google Scholar
25.Kohlrausch, F., Praktische Physik, (B.G. Teubner, Stuttgart, Germany, 1996), Vol. 3, p. 300.Google Scholar
26.Owen, E.A. and Pickup, L., Z. Kristallogr. A 88, 116 (1934).Google Scholar
27.Coles, B.R., J. Inst. Met. 84, 346 (1956).Google Scholar
28.Cahn, J.W., Acta Metall. 10, 789 (1962).CrossRefGoogle Scholar
29.Gottstein, G., Czubayko, U., Molodov, D.A., Shvindlerman, L.S., and Wunderlich, W., Mater. Sci. Forum 204–206, 99 (1996).Google Scholar
30.Sutton, A.P. and Balluffi, R.W., Interfaces in Crystalline Materials (Claredon Press, Oxford, UK, 1995), p. 353.Google Scholar
31.Herz, K. and Brückner, W., Appl. Surf. Sci. 134, 213 (1998).Google Scholar
32.Brückner, W., Pitschke, W., Thomas, J., and Leitner, G., J. Appl. Phys. 87, 2219 (2000).Google Scholar
33.Brückner, W. and Baunack, S., Thin Solid Films 355–356, 316 (1999).CrossRefGoogle Scholar