Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T09:06:13.819Z Has data issue: false hasContentIssue false

Anisotropic nanomechanical properties of Nephila clavipes dragline silk

Published online by Cambridge University Press:  01 August 2006

Donna M. Ebenstein
Affiliation:
Code 6176, United States Naval Research Laboratory, Washington, DC 20375
Kathryn J. Wahl*
Affiliation:
Code 6176, United States Naval Research Laboratory, Washington, DC 20375
*
a) Address all correspondence to this author. e-mail: kathryn.wahl@nrl.navy.mil
Get access

Abstract

Spider silk is a material with unique mechanical properties under tension. In this study, we explore the anisotropic mechanical properties of spider silk using instrumented indentation. Both quasistatic indentation and dynamic stiffness imaging techniques were used to measure the mechanical properties in transverse and longitudinal sections of silk fibers. Quasistatic indentation yielded moduli of 10 ± 2 GPa in transverse sections and moduli of 6.4 ± 0.5 GPa in longitudinal sections, demonstrating mechanical anisotropy in the fiber. This result was supported by dynamic stiffness imaging, which also showed the average reduced modulus measured in the transverse section to be slightly higher than that of the longitudinal section. Stiffness imaging further revealed an oriented microstructure in the fiber, showing microfibrils aligned with the drawing axis of the fiber. No spatial distribution of modulus across the silk sections was observed by either quasistatic or stiffness imaging mechanics.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gosline, J.M., Demont, M.E., Denny, M.W.: The structure and properties of spider silk. Endeavour 10, 37 (1986).Google Scholar
2.Hinman, M.B., Jones, J.A., Lewis, R.V.: Synthetic spider silk: A modular fiber. Trends Biotechnol. 18, 374 (2000).CrossRefGoogle Scholar
3.Vollrath, F., Knight, D.P.: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).Google Scholar
4.Lewis, R.V.: Spider silk–The unraveling of a mystery. Acc. Chem. Res. 25, 392 (1992).Google Scholar
5.Bini, E., Knight, D.P., Kaplan, D.L.: Mapping domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol. 335, 27 (2004).CrossRefGoogle ScholarPubMed
6.Gosline, J.M., Guerette, P.A., Ortlepp, C.S., Savage, K.N.: The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295 (1999).CrossRefGoogle ScholarPubMed
7.Grubb, D.T., Jelinski, L.W.: Fiber morphology of spider silk: The effects of tensile deformation. Macromolecules 30, 2860 (1997).CrossRefGoogle Scholar
8.Augsten, K., Mühlig, P., Herrmann, C.: Glycoproteins and skin-core structure in Nephila clavipes spider silk observed by light and electron microscopy. Scanning 22, 12 (2000).CrossRefGoogle ScholarPubMed
9.Poza, P., Perez-Rigueiro, J., Elices, M., Llorca, J.: Fractographic analysis of silkworm and spider silk. Eng. Fract. Mech. 69, 1035 (2002).CrossRefGoogle Scholar
10.Perez-Rigueiro, J., Elices, M., Llorca, J., Viney, C.: Tensile properties of Argiope trifasciata drag line silk obtained from the spider's web. J. Appl. Polym. Sci. 82, 2245 (2001).CrossRefGoogle Scholar
11.Frische, S., Maunsbach, A.B., Vollrath, F.: Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy. J. Microscopy—Oxford. 189, 64 (1998).Google Scholar
12.Blackledge, T.A., Swindeman, J.E., Hayashi, C.Y.: Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus. J. Exp. Biol. 208, 1937 (2005).Google Scholar
13.Altman, G.H., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J.S., Lu, H., Richmond, J., Kaplan, D.L.: Silk-based biomaterials. Biomaterials 24, 401 (2003).Google Scholar
14.Cunniff, P.M., Fossey, S.A., Auerbach, M.A., Song, J.W. Mechanical properties of major ampullate gland silk fibers extracted from Nephila lavipes spiders, in Silk Polymers: Materials Science and Biotechnology, edited by Kaplan, D.L., Adams, W.W., Farmer, B., and Viney, C. (American Chemical Society, Washington, DC, 1994), pp. 234251.Google Scholar
15.Vollrath, F., Madsen, B., Shao, Z.Z.: The effect of spinning conditions on the mechanics of a spider's dragline silk. Proc. R. Soc. London, B: Biol. Sci. 268, 2339 (2001).Google Scholar
16.Miller, L.D., Putthanarat, S., Eby, R.K., Adams, W.W.: Investigation of the nanofibrillar morphology in silk fibers by small angle x-ray scattering and atomic force microscopy. Int. J. Biol. Macromol. 24, 159 (1999).Google Scholar
17.Li, S.F.Y., McGhie, A.J., Tang, S.L.: New internal structure of spider dragline silk revealed by atomic-force microscopy. Biophys. J. 66, 1209 (1994).Google Scholar
18.Cunniff, P.M., Fossey, S.A., Auerbach, M.A., Song, J.W., Kaplan, D.L., Adams, W.W., Eby, R.K., Mahoney, D.V., Vezie, D.L.: Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym. Adv. Technol. 5, 401 (1994).CrossRefGoogle Scholar
19.Yang, Y., Chen, X., Shao, Z.Z., Zhou, P., Porter, D., Knight, D.P., Vollrath, F.: Toughness of spider silk at high and low temperatures. Adv. Mater. 17, 84 (2005).Google Scholar
20.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
21.Asif, S.A.S., Wahl, K.J., Colton, R.J., Warren, O.L.: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192 (2001).CrossRefGoogle Scholar
22.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985), p. 452.CrossRefGoogle Scholar
23.Wang, Y.L., Yue, C.Y., Tam, K.C., Hue, X.: Relationship between processing, microstructure, and mechanical properties of injection molded thermotropic LCP. J. Appl. Polym. Sci. 88, 1713 (2003).Google Scholar
24.Bonner, M., Saunders, L.S., Ward, I.M., Davies, G.W., Wang, M., Tanner, K.E., Bonfield, W.: Anisotropic mechanical properties of oriented HAPEX (TM). J. Mater. Sci. 37, 325 (2002).Google Scholar
25.Roeder, R.K., Sproul, M.M., Turner, C.H.: Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J. Biomed. Mater. Res. A 67A, 801 (2003).Google Scholar
26.Swadener, J.G., Rho, J.Y., Pharr, G.M.: Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J. Biomed. Mater. Res. 57, 108 (2001).3.0.CO;2-6>CrossRefGoogle ScholarPubMed
27.Vlassak, J.J., Nix, W.D.: Indentation modulus of elastically anisotropic half-spaces. Philos. Mag. A Phys. Condens. Matter Struct. Def. Mech. Prop. 67, 1045 (1993).Google Scholar
28.Swanson, B.O., Blackledge, T.A., Beltran, J., Hayashi, C.Y.: Variations in the material properties of spider dragline silk across species. Appl. Phys. Mater. Sci. Proc. 82, 213 (2006).CrossRefGoogle Scholar
29.Lawrence, B.A., Vierra, C.A., Mooref, A.M.F.: Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5, 689 (2004).Google Scholar
30.Putthanarat, S., Tapadia, P., Zarkoob, S., Miller, L.D., Eby, R.K., Adams, W.W.: The color of dragline silk produced in captivity by the spider Nephila clavipes. Polym. 45, 1933 (2004).Google Scholar
31.Ebenstein, D.M., Park, J-H., Kaplan, D.L., and Wahl, K.J.: Nanomechanical and microstructural properties of Bombyx mori silk films, in Mechanical Properties of Bioinspired and Biological Materials edited by Viney, C., Katti, K., Ulm, F-J., and Hellmich, C. (Mater. Res. Soc. Symp. Proc. 844Warrendale, PA, 2005), Y2.2/R2.2, p. 107.Google Scholar
32.Zax, D.B., Armanios, D.E., Horak, S., Malowniak, C., Yang, Z.T.: Variation of mechanical properties with amino acid content in the silk of Nephila clavipes. Biomacromolecules 5, 732 (2004).CrossRefGoogle ScholarPubMed
33.Madsen, B., Vollrath, F.: Mechanics and morphology of silk drawn from anesthetized spiders. Naturwissenschaften 87, 148 (2000).CrossRefGoogle ScholarPubMed
34.Plaza, G.R., Guinea, G.V., Perez-Rigueiro, J., Elices, M.: Thermo-hygro-mechanical behavior of spider dragline silk: Glassy and rubbery states. J. Polym. Sci., Part B: Polym. Phys. 44, 994 (2006).CrossRefGoogle Scholar
35.Mayo, M.J., Nix, W.D.: A micro-indentation study of superplasticity in Pb, Sn, and Sn–38 wt% Pb. Acta Metall. 36, 2183 (1988).Google Scholar
36.Vollrath, F., Holtet, T., Thogersen, H.C., Frische, S.: Structural organization of spider silk. Proc. R. Soc. London, B: Biol. Sci. 263, 147 (1996).Google Scholar