Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T04:12:04.241Z Has data issue: false hasContentIssue false

Application of small-angle neutron scattering to the study of porosity in energetic materials

Published online by Cambridge University Press:  31 January 2011

Joseph T. Mang
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Cary B. Skidmore
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Rex P. Hjelm
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Philip M. Howe
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Small-angle neutron scattering (SANS) and the method of contrast variation were used to measure porosity and crystallite surface area in the energetic system octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and to gauge the effects of mechanical deformation on the pore-size distribution and crystallite surface area. The crystallite surface area and the presence of voids (pores) in a high explosive system are known to affect its behavior and overall performance. Measures of these two quantities after an insult, resulting from various process and accident scenarios, can be used to predict the performance of an explosive system after process- and accident-related mechanical deformation. The contrast variation technique allows us to discriminate between internal pores and features that are on or contiguous with the crystallite surface. Measurements were conducted on loose powders of HMX (261 and 10 mm, volume averaged mean particle diameters) and pellets made by uniaxial consolidation to 7 and 10 vol% porosity, respectively. Analysis of the SANS data indicates significant alteration of the intragranular pore structure and systematic shifts in the surface area that are dependent upon mechanical deformation.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tarver, C., Chidester, S., and Nichols, A., J. Phys. Chem. 100, 5794 (1996).CrossRefGoogle Scholar
2.White, C.T., Barrett, J.J.C, Mintmire, J.W., Elert, M.L., and Robertson, D.H., in Decomposition, Combustion and detonation Chemistry of Energeic Materials, edited by Brill, T.B., Russell, T.P., Tao, W.C., and Wardle, R.B. (Mater. Res. Soc. Symp. Proc. 418, Pittsburg, PA, 1996), p. 277.Google Scholar
3.Borne, L., Proceedings of the 11th International Detonation Symposium, edited by Short, J.M. and Tasker, D.G. (Office of Naval Research), p. 286.Google Scholar
4.Borne, L., Proceedings of the 10th International Detonation Symposium (1993), p. 181.Google Scholar
5.Schaefer, D., Brow, R., Olivier, B., Rieker, T., Beaucage, G., Hrubesh, L., and Lin, J., Modern Aspects of Small Angle Neutron Scattering (Kluwer Academic Publishers, Boston, MA, 1995).Google Scholar
6.Fratzl, P., Vogl, G., and Klaumunzer, S., J. Appl. Crystallogr. 24, 588 (1991).CrossRefGoogle Scholar
7.Antxustegi, M., Hall, P., and Calo, J., Energy Fuels 12, 542 (1998).CrossRefGoogle Scholar
8.Antxustegi, M., Hall, P., and Calo, J., J. Colloids Interface Sci. 202, 490 (1998).CrossRefGoogle Scholar
9.Hjelm, R., Wampler, W., Seeger, P., and Gerspacher, M., J. Mater. Res. 9, 3210 (1994).CrossRefGoogle Scholar
10.Marr, D., Wartenberg, M., Schwartz, K., Agamalian, M., and Wignall, G., Macromolecules 30, 2120 (1997).CrossRefGoogle Scholar
11.Acharya, D., Crowley, T., Hughes, R., Koon, C., Menendez, M., and Rieutord, F., J. Appl. Crystallogr. 23, 424 (1990).CrossRefGoogle Scholar
12.Schwahn, D., Ullmaier, H., Schelten, J., and Kesternich, W., Acta Metall. 31, 2003 (1983).CrossRefGoogle Scholar
13.Li, Q., Kesternich, W., Schwahn, D., and Ullmaier, H., Acta Metall. Mater. 38, 2382 (1990).Google Scholar
14.Carsughi, F., Kesternich, W., Schwahn, D., Ullmaier, H., and Schroeder, H., J. Nucl. Mater. 191–194, 1284 (1992).CrossRefGoogle Scholar
15.Stuhrmann, H. and Duee, E., J. Appl. Crystallogr. 8, 538 (1975).CrossRefGoogle Scholar
16.Skidmore, C., Phillips, D., and Crane, N., Microscope 45, 127 (1997).Google Scholar
17.Skidmore, C., Phillips, D., Howe, P., Mang, J., and Romero, J., Proceedings of the 11th International Detonation Symposium (in press).Google Scholar
18.Glatter, O. and Kratky, O., Small Angle X-ray Scattering (Academic Press, London, United Kingdom, 1982).Google Scholar
19.Schaefer, D. and Keefer, K., Phys. Rev. Lett. 56, 2199 (1986).CrossRefGoogle Scholar
20.Ruland, W., J. Appl. Crystallogr. 4, 70 (1971).CrossRefGoogle Scholar
21.Koberstein, J., Morra, B., and Stein, R., J. Appl. Crystallogr. 13, 34 (1980).CrossRefGoogle Scholar
22.Beaucage, G., J. Appl. Crystallogr. 28, 717 (1995).CrossRefGoogle Scholar
23.Hjelm, R., Mang, J., Skidmore, C., and Gerspacher, M., Proceedings of the Workshop on Materials Research Using Cold Neutrons at Pulsed Sources (World Scientific, Singapore, 1999), pp. 120127.Google Scholar
24.Seeger, P. and Hjelm, R., J. Appl. Crystallogr. 24, 467 (1991).CrossRefGoogle Scholar
25.Lowell, S. and Shields, J., Powder Surface Area and Porosity (Chapman & Hall, London, United Kingdom, 1991).Google Scholar
26.Hjelm, R., J. Appl. Crystallogr. 21, 618 (1988).CrossRefGoogle Scholar