Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T03:04:14.880Z Has data issue: false hasContentIssue false

Canonical-glass-like behavior of the polycrystalline relaxor ferroelectric (1–x)PbMg1/3Nb2/3O3xPbZrO3: Heat-capacity study

Published online by Cambridge University Press:  31 January 2011

Gurvinderjit Singh
Affiliation:
Ceramics Laboratory, Laser Materials Division, Centre for Advanced Technology, Indore 452 013
V.S. Tiwari
Affiliation:
Ceramics Laboratory, Laser Materials Division, Centre for Advanced Technology, Indore 452 013
Arun Kumar
Affiliation:
Ceramics Laboratory, Laser Materials Division, Centre for Advanced Technology, Indore 452 013
V.K. Wadhawan
Affiliation:
Ceramics Laboratory, Laser Materials Division, Centre for Advanced Technology, Indore 452 013
Get access

Abstract

A solid solution of lead magnesium niobate (PMN), a relaxor ferroelectric, with lead zirconate (PZ), an antiferroelectric, gives rise to a system that behaves like a relaxor ferroelectric for lower concentrations of PZ, and like a normal ferroelectric above 50% substitution by PZ. This paper reports the heat-capacity behavior of (1 – x)PMN–xPZ for the composition range x = 0.30 to 0.95 and temperature range 300–600 K. It was observed that, although the atomic structure of the material is basically crystalline throughout, with sharp x-ray diffraction peaks, the crossover from normal–ferroelectric behavior to relaxor–ferroelectric behavior (on decreasing x) is accompanied by a matching crossover from crystalline behavior to glassy behavior, as exhibited in the heat-capacity plots. In other words, the heat-capacity curves for the relaxor compositions bear resemblance to those observed for canonical or conventional glasses, with the glass-transition temperature and the continuous step in specific heat changing gradually as a function of the composition parameter x. However, not all properties match those for canonical glasses. For example, soaking for 24 h at a temperature or 10 to 20 K below the mean glass-transition temperature does not raise the specific heat to a value nearly equal to the value in the unfrozen state. Similarly, the glass-transition temperature (for 0.7PMN–0.3PZ) increases, though only marginally (from 337 K to 343 K), when the rate of heating across the transition is increased by a factor of 50 (from 0.1 K per minute to 5 K per min.). Further, the temperature interval ΔT over which most of the glass transition occurs in the relaxor ferroelectric is typically as large as 30–40 K, compared to only about 10 K for canonical glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Debenedetti, P.G. and Stillinger, F.H., Nature 410, 259 (2001).CrossRefGoogle Scholar
Wadhawan, V.K., Introduction to Ferroic Materials (Gordon & Breach Science Publishers, Amsterdam, The Netherlands, 2000).CrossRefGoogle Scholar
Hilton, A.D., Barber, D.J., Randall, C.A., and Shrout, T.R., J. Mater. Sci. 25, 3461 (1990).CrossRefGoogle Scholar
Boulesteix, C., Varnier, F., Llebaria, A., and Husson, E., J. Solid State Chem. 108, 141 (1994).CrossRefGoogle Scholar
Akbas, M.A. and Davies, P.K., J. Mater. Res. 12, 2617 (1997).CrossRefGoogle Scholar
Akbas, M.A. and Davies, P.K., J. Am. Ceram. Soc. 80, 2933 (1997).CrossRefGoogle Scholar
Egami, T., Dmowski, W., Teslic, S., Davies, P.K., Chen, J.W., and Chen, H., Ferroelectrics 231, 206 (1998).Google Scholar
Xu, Z., Gupta, S.M., Viehland, D., Yan, Y., and Pennycook, S.J., J. Am. Ceram. Soc. 83, 181 (2000).CrossRefGoogle Scholar
Pirc, R. and Blinc, R., Phys. Rev. B 60, 13470 (1999).CrossRefGoogle Scholar
Viehland, D., Wuttig, M., Cross, L. E., Ferroelectrics 120, 71 (1991).CrossRefGoogle Scholar
Chen, J., Chan, H.M., and Harmer, M.P., J. Am. Ceram. Soc. 72, 593 (1989).CrossRefGoogle Scholar
Noblanc, O., Gaucher, P., and Calvarin, G., J. Appl. Phys. 79, 4291 (1996).CrossRefGoogle Scholar
Lee, K-M. and Jang, H.M., J. Am. Ceram. Soc. 81, 2586 (1998).CrossRefGoogle Scholar
Hilton, A.D., Randall, C.A., Barber, D.J., and Shrout, T.R., Ferroelectrics 93, 379 (1989).CrossRefGoogle Scholar
Phillips, J.C., J. Non-Cryst. Solids 34, 153 (1979).CrossRefGoogle Scholar
Thorpe, M.F., J. Non-Cryst. Solids 57, 355 (1983).CrossRefGoogle Scholar
He, H. and Thorpe, M.F., Phys. Rev. Lett. 54, 2107 (1985).CrossRefGoogle Scholar
Bresser, W., Boolchand, P., and Suranyi, P., Phys. Rev. Lett. 56, 2493 (1986).CrossRefGoogle Scholar
Tatsumisago, M., Halfpap, B.L., Green, J.L., Lindsay, S.M., and Angell, C.A., Phys. Rev. Lett. 64, 1549 (1990).CrossRefGoogle Scholar
Feng, X., Bresser, W.J., and Boolchand, P., Phys. Rev. Lett. 78, 4422 (1997).CrossRefGoogle Scholar
Naumis, G.G., Phys. Rev. B 61, R9205 (2000).CrossRefGoogle Scholar
Yokosuka, M., Jpn. J. Appl. Phys. 37, 5257 (1998).CrossRefGoogle Scholar
Singh, G., Tiwari, V.S., Wadhawan, V. K., Solid State Commun. 118, 407 (2001).CrossRefGoogle Scholar
Tiwari, V.S., Singh, G., and Wadhawan, V.K., Ferroelectrics 281, (2002).CrossRefGoogle Scholar
Yoon, M-S. and Jang, H.M., J. Appl. Phys. 77, 3991 (1995).CrossRefGoogle Scholar
Setter, N. and Cross, L.E., J. Mater. Sci. 15, 2478 (1980).CrossRefGoogle Scholar
Rossetti, G.A., Cross, L.E., and Cline, J.P., J. Mater. Sci. 30, 24 (1995).CrossRefGoogle Scholar
Rossetti, G.A., Rodriguez, M.A., Navrotsky, A., Cross, L.E., and Newnham, R.E., J. Appl. Phys. 77, 1683 (1995).CrossRefGoogle Scholar
Rossetti, G.A. and Navrotsky, A., J. Solid State Chem. 144, 188 (1999).CrossRefGoogle Scholar
Swartz, S.L., Shrout, T.R., Schulze, W.A., and Cross, L.E., J. Am. Ceram. Soc. 67, 311 (1980).CrossRefGoogle Scholar
Landolt-Bo¨rnstein, , Numerical Data and Functional Relationships in Science and Technology, New Series, editor in chief: K-H. Hellwege, Group III: Crystal and Solid State Physics, Vol. 16 (Springer-Verlag, Berlin, Heidelberg, New York, 1989).Google Scholar
Sestak, J., Thermophysical Properties of Solids (Elsevier, Amsterdam, The Netherlands, 1984).Google Scholar
Chamberlin, R.V., Phase Transitions 65, 169 (1998).CrossRefGoogle Scholar
Kleemann, W., Phase Transitions 65, 141 (1998).CrossRefGoogle Scholar
Vugmeister, B.E. and Rabitz, H., Phys. Rev. B 61, 14 448 (2000).CrossRefGoogle Scholar
Blinc, R., Dolinsek, J., Gregorovic, A., Zalar, B., Filipic, C., Kutnjak, Z., Levstik, A., and Pirc, R., Phys. Rev. Lett. 83, 424 (1999).CrossRefGoogle Scholar
Donth, E., The Glass Transition (Springer, Berlin, Germany, 2001).CrossRefGoogle Scholar