Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T14:23:47.598Z Has data issue: false hasContentIssue false

Cation and vacancy disorder in U1−yNdyO2.00−x alloys

Published online by Cambridge University Press:  14 September 2015

Rozaliya I. Barabash*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Stewart L. Voit
Affiliation:
Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Dilpuneet S. Aidhy
Affiliation:
Department of Mechanical Engineering, University of Wyoming, Laramie, WY 82071, USA
Seung Min Lee
Affiliation:
Nuclear Engineering Department, College of Engineering and Computing, The University of South Carolina, Columbia, South Carolina 29208, USA
Travis W. Knight
Affiliation:
Nuclear Engineering Department, College of Engineering and Computing, The University of South Carolina, Columbia, South Carolina 29208, USA
David J. Sprouster*
Affiliation:
Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
Lynne E. Ecker
Affiliation:
Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
*
a)Address all correspondence to these authors. e-mail: rbarabas@utk.edu
Get access

Abstract

In the present article, the intermixing and clustering of U/Nd, O, and vacancies were studied by both laboratory and synchrotron-based x-ray diffraction in U1−yNdyO2−x alloys. It was found that an increased holding time at the high experimental temperature during initial alloy preparation results in a lower disorder of the Nd distribution in the alloys. Adjustment of the oxygen concentration in the U1−yNdyO2−x alloys with different Nd concentrations was accompanied by the formation of vacancies on the oxygen sublattice and a nanocrystalline component. The lattice parameters in the U1−yNdyO2−x alloys were also found to deviate significantly from Vegard's law when the Nd concentration was high (53%) and decreased with increasing oxygen concentration. Such changes indicate the formation of large vacancy concentrations during oxygen adjustment at these high temperatures. The change in the vacancy concentration after the oxygen adjustment was estimated relative to Nd concentration and oxygen stoichiometry.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fedosseev, A.M., Grigoriev, M.S., Budantseva, N.A., Guillaumont, D., Le Naour, C., Simoni, E., Den Auwer, C., and Moisy, P.: Americium(III) coordination chemistry: An unexplored diversity of structure and bonding. C. R. Chim. 13(6–7), 839 (2010).Google Scholar
Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J.: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13(6), 1434 (1998).CrossRefGoogle Scholar
Cocalia, V., Gutowski, K., and Rogers, R.: The coordination chemistry of actinides in ionic liquids: A review of experiment and simulation. Coord. Chem. Rev. 250(7–8), 755 (2006).Google Scholar
Szabo, Z., Toraishi, T., Vallet, V., and Grenthe, I.: Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms. Coord. Chem. Rev. 250(7–8), 784 (2006).CrossRefGoogle Scholar
Middleburgh, S.C., Grimes, R.W., Desai, K.H., Blair, P.R., Hallstadius, L., Backman, K., and Van Uffelen, P.: Swelling due to fission products and additives dissolved within the uranium dioxide lattice. J. Nucl. Mater. 427(1–3), 359 (2012).Google Scholar
Middleburgh, S.C., Parfitt, D.C., Grimes, R.W., Dorado, B., Bertolus, M., Blair, P.R., Hallstadius, L., and Backman, K.: Solution of trivalent cations into uranium dioxide. J. Nucl. Mater. 420, 268 (2012).Google Scholar
Sickafus, K.E., Grimes, R.W., Valdez, J.A., Cleave, A., Tang, M., Ishimaru, M., Corish, S.M., Stanek, C.R., and Uberuaga, B.P.: Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6(3), 217 (2007).Google Scholar
Denecke, M.: Actinide speciation using X-ray absorption fine structure spectroscopy. Coord. Chem. Rev. 250(7–8), 730 (2006).Google Scholar
Fillaux, C., Den Auwer, C., Guillaumont, D., Shuh, D.K., and Tyliszczak, T.: Investigation of actinide compounds by coupling X-ray absorption spectroscopy and quantum chemistry. J. Alloys Compd. 444445, 443 (2007).CrossRefGoogle Scholar
Fillaux, C., Berthet, J-C., Conradson, S.D., Guilbaud, P., Guillaumont, D., Hennig, C., Moisy, P., Roques, J., Simoni, E., Shuh, D.K., Tyliszczak, T., Castro-Rodriguez, I., and Den Auwer, C.: Combining theoretical chemistry and XANES multi-edge experiments to probe actinide valence states. C. R. Chim. 10(10–11), 859 (2007).CrossRefGoogle Scholar
Raymond, K.N., Wellman, D.L., Sgarlata, C., and Hill, A.P.: Curvature of the lanthanide contraction: An explanation. C. R. Chim. 13(6–7), 849 (2010).Google Scholar
Xue, H., Verma, R., and Shreeve, J-M.: Review of ionic liquids with fluorine-containing anions. J. Fluorine Chem. 127(2), 159 (2006).Google Scholar
Ohmichi, T., Fukushima, S., Maeda, A., and Watanabe, H.: On the relation between lattice parameter and O/M ratio for uranium dioxide-trivalent rare earth oxide solid solution. J. Nucl. Mater. 102, 40 (1981).Google Scholar
Goldstein, H.W., Neilson, E.F., Walsh, P.N., and White, D.: The heat capacities of yttrium oxide (Y2O3), lanthanum oxide (La2O3), and neodymium oxide (Nd2O3) from 16 to 300 degrees K. J. Phys. Chem. 63 1445, (1959).Google Scholar
Vălu, O.S., Staicu, D., Beneš, O., Konings, R.J.M., and Lajarge, P.: Heat capacity, thermal conductivity and thermal diffusivity of uranium–americium mixed oxides. J. Alloys Compd. V 614, 144 (2014).Google Scholar
Lelet, M.I., Suleimanov, E.V., Golubev, A.V., Geiger, C.A., Depmeier, W., Bosbach, D., and Alekseev, E.V.: Thermodynamic properties and behaviour of A2[(UO2)(MoO4)2] compounds with A=Li, Na, K, Rb, and Cs. J. Chem. Thermodyn. 79, 205 (2014).Google Scholar
Mamedov, B.A.: Accurate analytical evaluation of heat capacity of nuclear fuels using Einstein-Debye approximation. Nucl. Eng. Des. 276, 124 (2014).Google Scholar
Zhang, Y.F., Millett, P.C., Tonks, M.R., Bai, X.M., and Biner, S.B.: Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials. J. Nucl. Mater. 452(1–3), 296 (2014).Google Scholar
Guéneau, C., Dupin, N., Sundman, B., Martial, C., Dumas, J-C., Gossé, S., Chatain, S., De Bruycker, F., Manara, D., and Konings, R.J.M.: Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U–Pu–O–C systems. J. Nucl. Mater. 419(1–3), 145 (2011).Google Scholar
Matveeva, A.G., Grigoriev, M.S., Dvoryanchikova, T.K., Matveev, S.V., Safiulina, A.M., Sinegribova, O.A., Passechnik, M.P., Godovikov, I.A., Tatarinov, D.A., Mironov, V.F., and Tananaev, I.G.: Complexes of (2-methyl-4-oxopent-2-yl)diphenylphosphine oxide with uranyl and neodymium nitrates: Synthesis and structures in the solid state and in solution. Russ. Chem. Bull. 61(2), 399 (2012).Google Scholar
McMurray, J.W., Shin, D., Slone, B.W., and Besmann, T.M.: Thermodynamic reassessment of U-Gd-O system. J. Nucl. Mater. 452(1–3), 397 (2014).Google Scholar
Huang, W. and Chen, H.: Investigation of the elastic, hardness, and thermodynamic properties of actinide oxides. Phys. B: Condens. Matter 449, 133 (2014).CrossRefGoogle Scholar
Hou, Y.N., Xu, X.T., Xing, N., Bai, F.Y., Duan, S.B., Sun, Q., Wei, S.Y., Shi, Z., Zhang, H.Z., and Xing, Y.H.: Photocatalytic application of 4f-5f inorganic-organic frameworks: Influence of Lanthanide contraction on the structure and functional properties of a series of uranyl-lanthanide complexes. Chempluschem 79(9), 1304 (2014).Google Scholar
Allen, G.C., Tempest, P.A., and Tyler, J.W.: Coordination model for the defect structure of hyperstoichiometric UO2+x and U4O9. Nature 295, 48 (1982).Google Scholar
Desgranges, L., Pontillon, Y., Matheron, P., Marcet, M., Simon, P., Guimbretiere, G., and Porcher, F.: Miscibility gap in the U-Nd-O phase diagram: A new approach of nuclear oxides in the environment? Inorg. Chem. 51(17), 9147 (2012).Google Scholar
Lee, S-M., Knigt, T.W., Voit, S.L., and Barabash, R.I.: The lattice parameter behavior with different Nd and O Concentration in the (U1-yNdy)O2±x solid solution. Nucl. Technol. (2015, in press).Google Scholar
Albinati, A., Cooper, M.J., Rouse, K.D., Thomas, M.W., and Willis, B.T.M.: Temperature dependence of the atomic thermal displacements in UO2: A test case for the rietveld profile-refinement procedure. Acta Crystallogr. A A36, 265 (1980).Google Scholar
Mittemeijer, E.J. and Welzel, U.: The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z. Kristallogr. 223, 552 (2008).Google Scholar
Brandstetter, S., Derlet, P.M., Van Petegem, S., and Van Swygenhoven, H.: Williamson–Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations. Acta Mater. 56, 165 (2008).Google Scholar
Hutchings, M.T.: High-temperature studies of UO2 and ThO2 using neutron scattering techniques. J. Chem. Soc. Faraday Trans. 83, 1083 (1987).Google Scholar
Hund, V.F. and Peetz, U.: Untersuchungen der Systeme La2O3, Nd2O3, Sm2O3, Yb2O3, Sc2O3 rnit UsO8. Zeitschrift für Anorgariischc Urtd Allgrmeine Chemie 271, 6 (1952).Google Scholar
Krivoglaz, M.A.: Diffuse Scattering of X-rays and Neutrons by Fluctuations (Springer, New York, USA, 1996); pp. 284.Google Scholar
Dederichs, P.H.: The theory of diffuse x ray scattering and its application to the study of point defects and their clusters. J. Phys. F: Metal Phys. 3, 471 (1973).Google Scholar
Barabash, R.I., Ice, G.E., Karapetrova, E.A., and Zschack, P.: Stress annealing induced diffuse scattering from Ni3 (Al, Si) precipitates. Metall. Mater. Trans. A. 43(5), 1413 (2011).Google Scholar
Barabash, R.I., Chung, J.S., and Thorpe, M.F.: Lattice and continuum theories of Huang scattering. J. Phys.: Condens. Matter 11, 3075 (1999).Google Scholar
Stoller, R.E., Walker, F.J., Specht, E.D., Nicholson, D.M., Barabash, R.I., Zschack, P., and Ice, G.E.: Diffuse X-ray scattering measurements of point defects and clusters in iron. J. Nucl. Mater. 367370, 269 (2007).Google Scholar
Barabash, R.I. and Krivoglaz, M.A.: Influence of anisotropy on X-ray scattering by highly distorted ageing solid solutions. Phys. Met. Metall. 51(5), 1 (1981).Google Scholar
Barabash, R.I. and Krivoglaz, M.A.: X-ray scattering by polycrystals containing defects with Coulomb displacement fields. Phys. Met. Metall. 45(1), 1 (1979).Google Scholar
Ice, G.E., Barabash, R.I., and Liu, W-J.: Diffuse X-ray scattering from tiny sample volumes. Z. Kristallogr. 220(12), 1076 (2005).Google Scholar
International Center for Diffraction Data (ICDD)\Pair Distribution Functions (PDF)4 + hsrdb. (2012).Google Scholar
Stark, J.P.: Thermodynamic stability of vacancy concentrations during thermal diffusion experiments. Scr. Metall. Mater. 6, 91 (1972).Google Scholar
Krivoglaz, M.A.: X-ray and Neutron Diffraction in Nonideal Crystals (Springer, New York, USA, 1996); pp. 465.Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides. Acta Crystallogr. Sec. A 32, 751 (1976).Google Scholar
Yun, Y. and Kim, W.W.: First principle studies on electronic and defect structures of UO2, ThO2, and PuO2. In Transactions of Korean Nuclear Society Spring Meeting, Jeju, Korea, (2007).Google Scholar
Schwartz, A., Dressel, M., Alavi, B., Blank, A., Dubois, S., Grüner, G., Gorshunov, B., Volkov, A., Kozlov, G., Thieme, S., Degiorgi, L., and Lévy, F.: Fluctuation effects on the electrodynamics of quasi-one-dimensional conductors above the charge-density-wave transition. Phys. Rev. B 52(8), 5643 (1995).Google Scholar
Rice, M. and Mele, E.: Possibility of solitons with charge ±e/2 in highly correlated 1:2 salts of tetracyanoquinodimethane (TCNQ). Phys. Rev. B 25(2), 1339 (1982).Google Scholar
Pang, J., Buyers, W., Chernatynskiy, A., Lumsden, M., Larson, B., and Phillpot, S.: Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory. Phys. Rev. Lett. 110, 15 (2013).Google Scholar
Park, K. and Olander, D.R.: A defect model for the oxygen potential of urania. High Temp. Sci. 29, 203 (1990).Google Scholar
Willis, B.T.M.: The defect structure of hyper-stoichiometric uranium dioxide. Acta Crystallogr. A 34, 88 (1978).Google Scholar
Geng, H.Y., Chen, Y., Kaneta, Y., Iwasawa, M., Ohnuma, T., and Kinoshita, M.: Point defects and clustering in uranium dioxide by LSDA+U calculations. arXiv:0806.1790v1 [cond-mat.mtr]-sci]Rev. B 77, 104120 (2008).Google Scholar
Chakraborty, P., Tonks, M.R., and Pastore, G.: Modeling the influence of bubble pressure on grain boundary separation and fission gas release. J. Nucl. Mater. 452(1–3), 95 (2014).Google Scholar
Chen, T., Chen, D., Sencer, B.H., and Shao, L.: Molecular dynamics simulations of grain boundary thermal resistance in UO2. J. Nucl. Mater. 452(1–3), 364 (2014).Google Scholar
Rest, J. and Gehl, S.M.: The mechanistic prediction of transient fission-gas release from LWR fuel. Nucl. Eng. Des. 56(1), 233 (1980).Google Scholar
White, R.J. and Tucker, M.O.: A new fission-gas release model. J. Nucl. Mater. 118(1), 1 (1983).Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).Google Scholar
Pirzada, M., Grimes, R.W., Minervini, L., Maguire, J.F., and Sickafus, K.E.: Oxygen migration in A2B2O7 pyrochlores. Solid State Ionics 140, 201 (2001).Google Scholar
Hanken, B.E., Stanek, C.R., Gronbech-Jensen, N., and Asta, M.: Computational study of the energetics of charge and cation mixing in U(1-x)Ce(x)O2. Phys. Rev. B 84, 085131 (2011).Google Scholar
Aidhy, D.S., Liu, B., Zhang, Y., and Weber, W.J.: Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations. Comput. Mater. Sci. 99, 298 (2015).Google Scholar
Andersson, D.A., Baldinozzi, G., Desgranges, L., Conradson, D.R., and Conradson, S.D.: Density functional theory calculations of UO2 oxidation: Evolution of UO2+x, U4O9-y, U3O7 and U3O8. Inorg. Chem. 52, 2769 (2013).Google Scholar
Proffen, Th. and Billinge, S.J.L.: PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J Appl Cryst. 32, 572 (1999).Google Scholar
Perdew, J. and Wang, Y.: Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B. Condens. Matter. 46(20), 12947 (1992).Google Scholar
Proffen, Th., Billinge, S.J.L., Egami, T., and Louca, D.: Structural analysis of complex materials using the atomic pair distribution function – A practical guide. Z. Kristallogr. 218, 132 (2003).Google Scholar
Nicholson, D.M.C., Barabash, R.I., Ice, G.E., Sparks, C.J., Lee Robertson, J., and Wolverton, C.: Relationship between pair and higher-order correlations in solid solutions and other Ising systems. J. Phys.: Condens. Matter 18(50), 11585 (2006).Google Scholar