Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T02:40:29.006Z Has data issue: false hasContentIssue false

Cement as a thermoelectric material

Published online by Cambridge University Press:  31 January 2011

Sihai Wen
Affiliation:
Composite Materials Research Laboratory, State University of New York at Buffalo, Buffalo, New York 14260–4400
D. D. L. Chung
Affiliation:
Composite Materials Research Laboratory, State University of New York at Buffalo, Buffalo, New York 14260–4400
Get access

Abstract

Cement pastes containing short steel fibers, which contribute to electron conduction, exhibit positive values (up to 68 μV/°C) of the absolute thermoelectric power. Cement pastes containing short carbon fibers, which contribute to hole conduction while the cement matrix contributes to electron conduction, exhibit negative or slightly positive values of the absolute thermoelectric power. The hole and electron contributions in carbon fiber reinforced cement paste are equal at the percolation threshold. Addition of either steel or carbon fibers to cement paste yields more reversibility and linearity in the variation of the Seebeck voltage with temperature difference (up to 65 °C).

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fu, X. and Chung, D.D.L, Cem. Concr. Res. 25, 689 (1995).CrossRefGoogle Scholar
2.Hou, J. and Chung, D.D.L, Cem. Concr. Res. 27, 649 (1997).CrossRefGoogle Scholar
3.Clemena, G.G., Materials Performance 27, 19 (1988).Google Scholar
4.Brousseau, R.J. and Pye, G.B., ACI Mater. J. 94, 306 (1997).Google Scholar
5.Chen, P. and Chung, D.D.L, Smart Mater. Struct. 2, 181 (1993).CrossRefGoogle Scholar
6.Chen, P. and Chung, D.D.L, J. Electron. Mater. 24, 47 (1995).CrossRefGoogle Scholar
7.Banthia, N., Djeridane, S., and Pigeon, M., Cem. Concr. Res. 22, 804 (1992).CrossRefGoogle Scholar
8.Xie, P., Gu, P., and Beaudoin, J.J., J. Mater. Sci. 31, 4093 (1996).CrossRefGoogle Scholar
9.Shui, Z., Li, J., Huang, F., and Yang, D., J. Wuhan Univ. Tech., Mater. Sci. Ed. 10, 37 (1995).Google Scholar
10.Sun, M., Li, Z., Mao, Q., and Shen, D., Cem. Concr. Res. 28, 549 (1998).CrossRefGoogle Scholar
11.Sun, M., Li, Z., Mai, Q., and Shen, D., Cem. Concr. Res. 28, 1707 (1998).CrossRefGoogle Scholar
12.Chen, P., Fu, X., and Chung, D.D.L, ACI Mater. J. 94, 147 (1997).Google Scholar
13.Chen, P. and Chung, D.D.L, Composites 24, 33 (1993).CrossRefGoogle Scholar
14.Banthia, N. and Sheng, J., Cem. Concr. Composites 18, 251 (1996).CrossRefGoogle Scholar
15.Zayat, K. and Bayasi, Z., ACI Mater. J. 93, 178 (1996).Google Scholar
16.Mobasher, B. and Li, C.Y., ACI Mater. J. 93, 284 (1996).Google Scholar
17.Pigeon, M., Azzabi, M., and Pleau, R., Cem. Concr. Res. 26, 1163 (1996).CrossRefGoogle Scholar
18.Banthia, N., Yan, C., and Sakai, K., Com. Concr. Composites 20, 393 (1998).CrossRefGoogle Scholar
19.Chen, P. and Chung, D.D.L, ACI Mater. J. 93, 129 (1996).Google Scholar
20.Pollock, D.D., Thermoelectricity: Theory, Thermometry, Tool (ASTM Special Technical Publication 852, Philadelphia, PA, 1985), p. 121.CrossRefGoogle Scholar
21.Ohring, M., Engineering Materials Science (Academic Press, San Diego, CA, 1995), p. 633.Google Scholar