Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T04:40:29.811Z Has data issue: false hasContentIssue false

Change of the weak-field properties of Pb(ZrTi)O3 piezoceramics with compressive uniaxial stresses and its links to the effect of dopants on the stability of the polarizations in the materials

Published online by Cambridge University Press:  31 January 2011

Q. M. Zhang
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Jianzhong Zhao
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
K. Uchino
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Jiehui Zheng
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

The properties of several Pb(ZrTi)O3 (PZT) piezoceramics under compressive uniaxial stresses were characterized. It was observed that uniaxial stresses have a marked effect on the soft PZT materials, including reducing the piezoelectric coefficients and depoling the samples at relatively low stress levels. The effect of the uniaxial stresses on the properties of hard PZT's is more complicated because the domain structure of the materials can be changed substantially without depoling the samples. Therefore, under a compressive stress along the poling direction, the piezoelectric and electromechanical coupling factor can be increased markedly due to both the increased non-180° domain boundary motions and the deaging effect. In addition, the experimental results support the notion that the difference between a hard PZT and a soft PZT lies in the types of defects introduced by dopants. Immobile defects create frustrations in the lattice and result in a soft behavior, and mobile defects stabilize the polarization and produce a hard behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, London and New York, 1971).Google Scholar
2.Arlt, G., J. Mater. Sci. 25, 2655 (1990).CrossRefGoogle Scholar
3.Zhang, X. L., Chen, Z. X., Cross, L. E., and Schulze, W. A., J. Mater. Sci. 18, 968 (1983).CrossRefGoogle Scholar
4.Devonshire, A. F., Philos. Mag. 3, 85 (1954).Google Scholar
5.Zhang, Q. M., Wang, H., Kim, N., and Cross, L. E., J. Appl. Phys. 75, 454 (1994).CrossRefGoogle Scholar
6.Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).Google Scholar
7. IEEE Standard on Piezoelectricity, ANSI/IEEE, Std. 176 (1988).Google Scholar
8.Wang, H., Zhang, Q. M., and Cross, L. E., Jpn. J. Appl. Phys. 32, L1281 (1993).CrossRefGoogle Scholar
9.Zhang, Q. M., Pan, W. Y., Jang, S. J., and Cross, L. E., J. Appl. Phys. 64, 6445 (1989).CrossRefGoogle Scholar
10.Zhang, Q. M., Wang, H., and Zhao, J., J. Intel. Mater. Syst. Struct. 6, 84 (1995).CrossRefGoogle Scholar
11.Berlincourt, D. and Krueger, H., J. Appl. Phys. 30, 1804 (1959).CrossRefGoogle Scholar
12.Krueger, H. and Berlincourt, D., J. Acoust. Soc. Am. 33, 1339 (1961).CrossRefGoogle Scholar
13.Nishi, R. Y., J. Acoust. Soc. Am. 40, 486 (1966).CrossRefGoogle Scholar
14.Krueger, H., J. Acoust. Soc. Am. 42, 636 (1967).CrossRefGoogle Scholar
15.Nakajima, Y., Hayashi, T., Hayashi, I., and Uchino, K., Jpn. J. Appl. Phys. 34, 235 (1985).CrossRefGoogle Scholar
16.Uchino, K., Piezoelectric & Electrostrictive Actuators (Morikita Pub., Tokyo, 1986).CrossRefGoogle Scholar
17. Hengchu Cao and Evans, A. G., J. Am. Ceram. Soc. 76, 890 (1993).CrossRefGoogle Scholar
18.Wang, H., Zhang, Q. M., Cross, L. E., and Sykes, A. O., J. Appl. Phys. 74, 3394 (1993).CrossRefGoogle Scholar
19. PZT-5H, PZT-5A, PZT-4, and PZT-8 are the trademarks of Morgan Matroc, Inc. (Bedford, OH) for its PZT piezoceramics.Google Scholar
20.Gerson, R., J. Appl. Phys. 31, 188194 (1960).CrossRefGoogle Scholar
21.Berlincourt, D., SC-4443(RR), Sandia Corp. Tech. Rept. (1960).Google Scholar
22.Schulze, W. A. and Ogino, K., Ferro. 87, 361 (1988).CrossRefGoogle Scholar
23.Kawata, J., Uchino, K., and Nomura, S., Jpn. J. Appl. Phys. 21, 1298 (1982).CrossRefGoogle Scholar