Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T03:41:57.307Z Has data issue: false hasContentIssue false

Characteristics of ultraviolet-assisted pulsed-laser-deposited Y2O3 thin films

Published online by Cambridge University Press:  31 January 2011

V. Craciun*
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
E. S. Lambers
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
N. D. Bassim
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
R. K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
D. Craciun
Affiliation:
Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Bucharest, Romania
*
a)Address correspondence to this author.r.singh@mse.ufl.edu
Get access

Abstract

The properties of thin Y2O3 films grown using an in situ ultraviolet (UV)-assisted pulsed laser deposition (PLD) technique were studied. With respect to Y2O3 films grown by conventional PLD under similar conditions but without UV illumination, the UVPLD-grown films exhibited better structural and optical properties, especially for lower substrate temperatures, from 340 to 400 °C. These layers were highly crystalline and textured along the (111) direction, and their refractive index values were similar to those of reference Y2O3 layers. They also exhibited a better stoichiometry and contained less physisorbed oxygen than the conventional PLD-grown layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Singh, R.K. and Narayan, J., Phys. Rev. B 43, 8843 (1990).Google Scholar
2.Singh, R.K. and Kumar, D., Mater. Sci. Engr. Reports R22, 113 (1998).Google Scholar
3.Park, J., Rouleau, C.M., and Lowndes, D.H., in Advances in Laser Ablation of Materials, edited by Singh, R.K., Lowndes, D.H., Chrisey, D.B., Fogarassy, E., and Narayan, J. (Mater. Res. Soc. Symp. Proc. 526, Warrendale, PA, 1998), p. 27.Google Scholar
4.McKee, R.A., Walker, F.J., and Conner, J.R., Appl. Phys. Lett. 59, 782 (1991).Google Scholar
5.Prusseit, W., Corsepius, S., and Zwerger, M., Physica C 201, 249 (1992).CrossRefGoogle Scholar
6.Horwitz, J.S., Grabowski, K.S., Chrisey, D.B., and Leuchtner, R.E., Appl. Phys. Lett. 59, 1565 (1991).Google Scholar
7.Nagabhusman, R. and Singh, R.K., in Transient Thermal Processing of Materials, edited by Ravindrai, D.N. and Singh, R.K. (TMS, Warrendale, PA, 1997). p. 45.Google Scholar
8.Gluck, N.S., Sankur, H., and Gunning, W.J., J. Vac. Sci. Technol., A 7, 2983 (1989).Google Scholar
9.Reisse, G., Keiper, B., Weissmantel, S., Johansen, H., Scolz, R., and Martini, T., Thin Solid Films 241, 119 (1994).CrossRefGoogle Scholar
10.Holzapfel, B., Betz, V., Schlafer, D., Bauer, H-D., and Schultz, L., IEEE Trans. Appl. Supercond. 9, 1051 (1999).CrossRefGoogle Scholar
11.Koren, G., Gupta, A., and Baseman, R.J., Appl. Phys. Lett. 54, 1920 (1989).Google Scholar
12.Otis, C.E., Gupta, A., and Braren, B., Appl. Phys. Lett. 62, 102 (1993).Google Scholar
13.Tabata, H., Kawai, T., and Kawai, S., Appl. Phys. Lett. 58, 1443 (1991).Google Scholar
14.Otsubo, S., Minamikawa, T., Yonezawa, Y., Maeda, T., Morimoto, A., and Shimizu, T., Jpn. J. Appl. Phys. Part I 28, L2211 (1989).Google Scholar
15.Morimoto, A., Mizukami, S., Shimizu, T., Minamikawa, T., Yonezawa, Y., Segawa, K., and Otsubo, S., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D.T., Tsuei, C.C., Schneider, T.R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 371.Google Scholar
16.Horwitz, J.S., Chrisey, D.B., Grabowski, K.S., Carosella, C.A., Lubitz, P., and Edmondson, C., in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubowski, J.J., and Norton, D. (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 391.Google Scholar
17.Estler, R.C., Nogar, N.S., Muenchausen, R.E., Dye, R.C., Flamme, C., Martin, J.A., Garcia, A.R., and Foltyn, S., Mater. Lett. 9, 342 (1990).CrossRefGoogle Scholar
18.Boulmer-Leborgne, C., Thomann, A.L., Andreazza, P., Andreazza-Vignolle, C., Hermann, J., Craciun, V., Echegut, P., and Craciun, D., Appl. Surf. Sci. 125, 137 (1998).CrossRefGoogle Scholar
19.Wengenmair, H., Gerlach, J.W., Preckwinkel, U., Stritzker, B., and Rauschenbach, B., Appl. Surf. Sci. 99, 313 (1996).CrossRefGoogle Scholar
20.Craciun, V., Howard, J., and Singh, R.K., in Multicomponent Oxide Films for Electronics, edited by Hawley, M.R., Blank, D.H.A, Eom, C-B., Schlom, D.G., and Streiffer, S.K. (Mater. Res. Soc. Symp. Proc. 574, Warrendale, PA, 1999), p. 193.Google Scholar
21.Craciun, V., Craciun, D., and Boyd, I.W., Electron. Lett. 34, 1527 (1998).Google Scholar
22.Craciun, V., Boyd, I.W., Craciun, D., Andreazza, P., and Perriere, J., Appl. Surf. Sci 138–139, 587 (1999).CrossRefGoogle Scholar
23.Craciun, V., Boyd, I.W., Craciun, D., Andreazza, P., and Perriere, J., J. Appl. Phys. 85, 8410 (1999).Google Scholar
24.Cho, K.G., Kumar, D., Jones, S.L., Lee, D.G., Holloway, P.H., and Singh, R.K., J. Electrochem. Soc. 145, 3456 (1998).Google Scholar
25.Cho, K.G., Kumar, D., Holloway, P.H., and Singh, R.K., Appl. Phys. Lett. 73, 3058 (1998).Google Scholar
26.Pearton, S.J., Ren, F., Abernathy, C.R., Hobson, W.S., and Luftman, H.S., Appl. Phys. 58, 1416 (1991).Google Scholar
27.Moon, D.W., Kurokawa, A., Ichimura, S., Lee, H.W., and Jeon, I.C., J. Vac. Sci. Technol., A 17, 150 (1999).Google Scholar
28.Baulch, D.L., Cox, R.A., Hampson, R.F. Jr, Kerr, J.A., Troe, J., and Watson, R.T., J. Phys. Chem. Ref. Data 9, 295 (1980).Google Scholar
29.Greer, J.A. and Tabat, M., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 87.Google Scholar
30.Araiza, J.J., Cardenas, M., Falcony, C., Mendez-Garcia, V.H., Lopez, M., and Contreras-Puente, G., J. Vac. Sci. Technol., A 16, 3305 (1998).CrossRefGoogle Scholar
31.Choi, S.C., Cho, M.H., Whangbo, S.W., Whang, C.N., Hong, C.E., Kim, N.Y., Jeon, J.S., Lee, S.I., and Lee, M.Y., Nucl. Instr. Meth. B 121, 170 (1997).Google Scholar
32.Cho, M-H., Ko, D-H., Jeong, K., Whangbo, S.W., Whang, C.N., Choi, S.C., and Cho, S.J., J. Appl. Phys. 85, 2909 (1999).Google Scholar
33.Ingo, G.M. and Marletta, G., Nucl. Instrum. Methods Phys. Res., Sect. B 116, 440 (1996).Google Scholar
34.Duraud, J.P., Jollet, F., Thromat, N., Gautier, M., Maire, P., le Gressus, C., and Dartyge, E., J. Am. Ceram. Soc. 73, 2467 (1990).Google Scholar
35.Handbook of Optical Constants of Solids, edited by Palik, D. (Academic Press, Boston, 1991), Vol. II, p. 1090.Google Scholar