Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:25:19.707Z Has data issue: false hasContentIssue false

Chemical Attachment of Organic Functional Groups to Single-walled Carbon Nanotube Material

Published online by Cambridge University Press:  31 January 2011

Y. Chen
Affiliation:
Departments of Chemistry and Physics, University of Kentucky, Lexington, Kentucky 40506–0055
R. C. Haddon
Affiliation:
Departments of Chemistry and Physics, University of Kentucky, Lexington, Kentucky 40506–0055
S. Fang
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506–0055
A. M. Rao
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506–0055
P. C. Eklund
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506–0055
W. H. Lee
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506–0055
E. C. Dickey
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506–0055
E. A. Grulke
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506–0055
J. C. Pendergrass
Affiliation:
Departments of Chemistry and Pharmacy, University of Kentucky, Lexington, Kentucky 40506–0055
A. Chavan
Affiliation:
Departments of Chemistry and Pharmacy, University of Kentucky, Lexington, Kentucky 40506–0055
B. E. Haley
Affiliation:
Departments of Chemistry and Pharmacy, University of Kentucky, Lexington, Kentucky 40506–0055
R. E. Smalley
Affiliation:
Center for Nanoscale Science and Technology, Rice Quantum Institute and Departments of Chemistry and Physics, Rice University, Houston, Texas 77251
Get access

Abstract

We have subjected single-walled carbon nanotube materials (SWNTM's) to a variety of organic functionalization reactions. These reactions include radioactive photolabeling studies using diradical and nitrene sources, and treatment with dichlorocarbene and Birch reduction conditions. All of the reactions provide evidence for chemical attachment to the SWNTM's, but because of the impure nature of the staring materials, we are unable to ascertain the site of reaction. In the case of dichlorocarbene we are able to show the presence of chlorine in the SWNT bundles, but as a result of the large amount of amorphous carbon that is attached to the tube walls, we cannot distinguish between attachment of dichlorocarbene to the walls of the SWNT's and reaction with the amorphous carbon.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yakobson, B. I. and Smalley, R. E., Am. Scientist 85, 324337 (1997).Google Scholar
2.Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A., and Smalley, R. E., Nature (London) 388, 255257 (1997).Google Scholar
3.Rao, A. M., Eklund, P. C., Bandow, S., Thess, A., and Smalley, R. E., Nature (London) 388, 257259 (1997).Google Scholar
4.Wudl, F., Acc. Chem. Res. 25, 157161 (1992).CrossRefGoogle Scholar
5.Taylor, R. and Walton, D. M. R., Nature (London) 363, 685 (1993).Google Scholar
6.Hirsch, A., The Chemistry of the Fullerenes (Thieme, Stuttgart, 1994).CrossRefGoogle Scholar
7.Diederich, F. and Thilgen, C., Science 271, 317323 (1996).CrossRefGoogle Scholar
8.Meier, M. S., Wang, G-W., Haddon, R. C., Brock, C. P., Lloyd, M. L., Selegue, J. P., J. Am. Chem. Soc. 120, 23372342 (1998).CrossRefGoogle Scholar
9.Haddon, R. C., Science 261, 15451550 (1993).CrossRefGoogle Scholar
10.Haddon, R. C., J. Am. Chem. Soc. 119, 17971798 (1997).CrossRefGoogle Scholar
11.Haddon, R. C., Scuseria, G. E., and Smalley, R. E., Chem. Phys. Lett. 272, 3842 (1997).CrossRefGoogle Scholar
12.Ajayan, P. M. and Iijima, S., Nature (London) 361, 333334 (1993).Google Scholar
13.Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature (London) 362, 522523 (1993).Google Scholar
14.Tsang, S. C., Harris, P. J. F., and Green, M. L. H., Nature (London) 362, 520525 (1993).Google Scholar
15.Tsang, S. C., Chen, Y. K., Harris, P. J. F., and Green, M. L. H., Nature (London) 372, 159162 (1994).Google Scholar
16.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., and Smalley, R. E., Science 273, 483487 (1996).CrossRefGoogle Scholar
17.Haddon, R. C., Fukunaga, T., Tetrahedron Lett., 1191 (1980).CrossRefGoogle Scholar
18.Collins, P. G., Zettl, A., Bando, H., Thess, A., Smalley, R. E., Nature (London) 278, 100102 (1997).Google Scholar
19.Seyfreth, D., Acc. Chem. Res. 5, 6574 (1972).CrossRefGoogle Scholar
20.Haddon, R. C., Chichester, S. V., Stein, S. M., Marshall, J. H., Mujsce, A. M., J. Org. Chem. 52, 711 (1987).CrossRefGoogle Scholar
21.Tsuda, M., Ishida, T., Nogami, T., Kurono, S., Ohashi, M., Tetrahedron Lett. 34, 69116912 (1993).CrossRefGoogle Scholar
22.Osterodt, J., Vogtle, F., Chem. Commun., 547–548 (1996).CrossRefGoogle Scholar
23.Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G., and Dresselhaus, M., Science 275, 187191 (1997).CrossRefGoogle Scholar
24.Wildoer, J. W. G., Venema, L. C.Rinzler, A. G., Smalley, R. E., and Dekker, C., Nature (London) 391, 5961 (1998).Google Scholar
25.Odom, T. W., Huang, J-L., Kim, P., Lieber, C. M., Nature (London) 391, 6264 (1998).Google Scholar
26.Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Chappelle, M. Lamy de la, Lefrant, S., Deniard, P., Lee, R., Fischer, J. E., Nature (London) 388, 756758 (1997).Google Scholar
27.Dorman, G. and Prestwich, G. D., Biochemistry 33, 56615675 (1994).CrossRefGoogle ScholarPubMed
28.Shoemaker, M. T. and Haley, B. E., Biochemistry 32, 18831890 (1993).CrossRefGoogle Scholar
29.Sankaran, B., Chavan, A. J., and Haley, B. E., Biochemistry (1996).Google Scholar
30.Turro, N. J., Modern Molecular Photochemistry (Benjamin, Menlo Park, NJ, 1978).Google Scholar
31.Yan, M., Cai, S. X., and Keana, J. F. W., J. Org. Chem. 59, 59515954 (1994).CrossRefGoogle Scholar
32.Haufler, R. E., Conceicao, J., Chibante, L. P. F., Chai, Y., Byrne, N. E., Flanagan, S., Haley, M. M., O'Brien, S. C., Pan, C., Xiao, Z., Billups, W. E., Ciufolini, M. A., Hauge, R. H., Margrave, J. L., Wilson, L. J., Curl, R. F., and Smalley, R. E., J. Phys. Chem. 94, 86348636 (1990).CrossRefGoogle Scholar