Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T16:56:33.607Z Has data issue: false hasContentIssue false

Chemical Solution Deposition of Lanthanum Zirconate Buffer Layers on Biaxially Textured Ni–1.7% Fe–3% W Alloy Substrates for Coated-conductor Fabrication

Published online by Cambridge University Press:  31 January 2011

S. Sathyamurthy
Affiliation:
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6100
M. Paranthaman
Affiliation:
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6100
T. Aytug
Affiliation:
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6100
B. W. Kang
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6116
P. M. Martin
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6116
A. Goyal
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6116
D. M. Kroeger
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6116
D. K. Christen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6061
Get access

Abstract

Sol-gel processing of La2Zr2O7 (LZO) buffer layers on biaxially textured Ni–1.7% Fe–3% W alloy substrates using a continuous reel-to-reel dip-coating unit has been studied. The epitaxial LZO films obtained have a strong cube texture and uniform microstructure. The effects of increasing the annealing speed on the texture, microstructure, and carbon content retained in the film were studied. On top of the LZO films, epitaxial layers of yttria-stabilized zirconia and Ceria (CeO2) were deposited using rf sputtering, and YBa2Cu3Ox (YBCO) films were then deposited using pulsed laser deposition. Critical current densities (Jc) of 1.9 MA/cm2 at 77 K and self-field and 0.34 MA/cm2at 77 K and 0.5 T have been obtained on these films. These values are comparable to those obtained on YBCO films deposited on all-vacuum deposited buffer layers and the highest ever obtained using solution seed layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Brinker, C.J., Hurd, A.J., Schunk, P.R., Frye, G.C., and Ashley, C.S., J. Non-Cryst. Solids, 147, 148, 424 (1992).CrossRefGoogle Scholar
2.Lange, F.F., Science 273, 903 (1996).CrossRefGoogle Scholar
3.Schwartz, R.W., Chem. Mater. 9, 2325 (1997).CrossRefGoogle Scholar
4.Shoup, S.S., Paranthaman, M., Beach, D.B., Specht, E.D., and Williams, R.K., J. Mater. Res. 12, 1017 (1997).Google Scholar
5.Paranthaman, M., Shoup, S.S., Beach, D.B., Williams, R.K., and Specht, E.D., Mater. Res. Bull. 32, 1697 (1997).CrossRefGoogle Scholar
6.Fukushima, J., Kodaira, K., and Matsushita, T., J. Mater. Sci . 19, 595 (1984).Google Scholar
7.Goyal, A., Norton, D.P., Baudai, J., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hatfield, E., and Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
8.Goyal, A., Budai, J.D., Kroeger, D.M., Norton, D.P., Specht, E.D., and Christen, D.K., U.S. Patents 5 739 086, 5 741 377, 5 898 020, 5 958 599; V. Selvamanickam. A. Goyal, and D.M. Kroeger, U.S. Patent 5 846 912; A. Goyal, E.D. Specht, D.M. Kroeger, and M. Paranthaman, U.S. Patent 5 964 966; J.D. Budai, D.K. Christen, A. Goyal, Q. He, D.M. Kroeger, D.F. Lee, F.A. List, D.P. Norton, M. Paranthaman, B.C. Sales, and E.D. Specht, U.S. Patent 5 968 877.Google Scholar
9.Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., and List, F.A., Science 274, 755 (1996).CrossRefGoogle Scholar
10.Paranthaman, M., Goyal, A., List, F.A., Specht, E.D., Lee, D.F., Martin, P.M., He, Q., Christen, D.K., Norton, D.P., Budai, J.D., and Kroeger, D.M., Physica C, 275, 266 (1997).CrossRefGoogle Scholar
11.Sathyamurthy, S. and Salama, K., Physica C 329, 58 (2000).CrossRefGoogle Scholar
12.McIntyre, P.C., Cima, M.J., Smith, J.A., Hallock, R.B., Siegal, M.P., and Phillips, J.M., J. Appl. Phys. 71, 1868 (1992).Google Scholar
13.Paranthaman, M. and Beach, D.B., J. Am. Ceram. Soc. 78, 2551 (1995).Google Scholar
14.Beach, D.B., Vallet, C.E., Paranthaman, M., Specht, E.D., Morrell, J.S., and Xue, Z.B., in Chemical Aspects of Electronic Ceramics Processing, edited by Kunta, P.N., Hepp, A.F., Beach, D.B., Arkles, B., and Sullivan, J.J. (Mater. Res. Soc. Symp. Proc. 495, Warrendale, PA, 1998, p. 263.Google Scholar
15.Shoup, S.S., Paranthaman, M., Goyal, A., Specht, E.D., Lee, D.F., and Kroeger, D.M., J. Am. Ceram. Soc. 81, 3019 (1998).CrossRefGoogle Scholar
16.Morrell, J.S., Xue, Z.B., Specht, E.D., Goyal, A., Martin, P.M., Lee, , Feenstra, R., Verebelyi, D.T., Christen, D.K., Chirayil, T.G., Paranthaman, , Vallet, C.E., and Beach, D.B., J. Mater. Res. 15, 621 (2000).CrossRefGoogle Scholar
17.Paranthaman, M., Chirayil, T.G., List, F.A., Cui, X., Goyal, A., Lee, D.F., Specht, E.D., Martin, P.M., Williams, R.K., Kroeger, D.M., Morrell, J.S., Beach, D.B., Feenstra, R., and Christen, D.K., J. Am. Ceram. Soc. 84, 273 (2001).Google Scholar
18.Koekstra, H.R., Inorg. Chem. 5, 754 (1966).CrossRefGoogle Scholar
19.Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
20.Williams, R., Parathaman, M., Chirayil, T.G., Lee, D.F., Goyal, A., and Feenstra, R., U.S. Patent No. 6 270 908 (2001).Google Scholar
21.Chirayil, T.G., Paranthaman, M., Beach, D.B., Lee, D.F., Goyal, A., Williams, R.K., Cui, X., Kroeger, D.M., Feenstra, R., Verebelyi, D.T., and Christen, D.K., Physica C 336, 63 (2000).Google Scholar
22.Ramamurthy, S.D. and Payne, D.A., J. Am. Ceram. Soc. 73, 2547 (1990).CrossRefGoogle Scholar
23.Francis, L.F., Payne, D.A., and Wilson, S.R., Chem. Mater. 2, 645 (1990).CrossRefGoogle Scholar
24.Goyal, A., Feenstra, R., Paranthaman, M., Thompson, J., Kang, B.W., Cantoni, C., Lee, D.F., List, F., Martin, P.M., Lara-Curzio, E., Stevens, C., Kroeger, D.M., Kowalewski, M., Specht, E.D., Aytug, T., Sathyamurthy, S., Williams, R.W., and Ericson, R., Physica C (2001, in press).Google Scholar
25.Chirayil, T.G., Paranthaman, M., Beach, D.B., Morell, J.S., Sun, E.Y., Goyal, A., Williams, R.K., Lee, D.F., Martin, P.M., Kroeger, D.M., Feenstra, R., Verebelyi, D.T., and Christen, D.K., in Multicomponent Oxide Films for Electronics, edited by Hawley, M.E., Blank, D.H.A., Eom, C.B., Schlom, D.G., and Streiffer, S.K. (Mater. Res. Soc. Symp. Proc. 574 Warrendale, PA, 1999), p. 51.Google Scholar
26.Mathis, J.E., Goyal, A., Lee, D.F., List, F.A., Paranthaman, M., Christen, , Specht, E.D., Kroeger, D.M., and Martin, P.M., Jpn. Appl. Phys. 37, L1379 (1998).Google Scholar