Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T04:27:05.520Z Has data issue: false hasContentIssue false

Chemical vapor deposition of an aluminum nitride–diamond composite in a triple torch plasma reactor

Published online by Cambridge University Press:  31 January 2011

Marcus Asmann
Affiliation:
High Temperature and Plasma Laboratory, University of Minnesota, Minneapolis, Minnesota 55455
Robert F. Cook
Affiliation:
Chemical Engineering and Materials Science Dept., University of Minnesota, Minneapolis, Minnesota 55455
Joachim V. Heberlein
Affiliation:
High Temperature and Plasma Laboratory, University of Minnesota, Minneapolis, Minnesota 55455
Emil Pfender
Affiliation:
High Temperature and Plasma Laboratory, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

An aluminum nitride–diamond composite has been produced by sequential deposition of AlN and diamond in a triple torch plasma reactor (TTPR). AlN was deposited from AlN powder by injection into the argon–nitrogen, converging plasma plume of a TTPR. Velocity and temperature profiles of the converging plasma plume, obtained by enthalpy probe measurements, were used to show that the powder decomposed prior to reaching the substrate. Diamond was deposited in an argon–hydrogen–methane system onto the existing AlN film. Characterization of an AlN–diamond–AlN composite indicated a Vickers hardness of 18.6 GPa and a modulus of elasticity of 245–282 GPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.CRC Handbook of Chemistry and Physics, 75th ed., edited by Lide, D.R. (CRC Presses, Inc., Boca Raton, FL, 1994).Google Scholar
2.Handbook of Industrial Diamonds and Diamond Films, edited by Prelas, M., Popovici, G., and Bigelow, L.K. (Marcel Dekker, Inc., New York, 1998).Google Scholar
3.Pierson, H.O., Handbook of Refractory Carbides and Nitrides (Noyes Publications, Westwood, NJ, 1996).Google Scholar
4.Morgan, R.E., Ehlers, S.L., and Sosniak, J., in Proceedings of the 1993 International Electronics Packaging Conference, San Diego, CA (Int. Electron. Packaging Soc., Wheaton, IL, 1993), pp. 759766.Google Scholar
5.Nguyen, N.B., in Proceedings of the 1992 International Symposium on Microelectronics, San Francisco, CA (1992), pp. 567570.Google Scholar
6.Nguyen, N.B., Solid State Technol. 36, 5960 (1993).Google Scholar
7.Ramaswami, B. and Jagannadham, K., in Power Semiconductor Materials and Devices, edited by Pearton, S.J., Shul, R.J., Wolfgang, E., Ren, F., and Tenconi, S. (Mater. Res. Soc. Symp. Proc. 483, Pittsburg, PA, 1997), pp. 6974.Google Scholar
8.Jagannadham, J., J. Vac. Sci. Technol. A 17, 373 (1999).Google Scholar
9.Godbole, V.P. and Narayan, J., J. Mater. Res. 11, 1810 (1996).CrossRefGoogle Scholar
10.Zhang, H-X., Jiang, Y-B., Yang, S-Z., Lin, Z., and Feng, K-A., Thin Solid Films 349, 162 (1999).Google Scholar
11.Godbole, V.P., Narayan, R., Xu, Z., Narayan, J., and Sankar, J., Mater. Sci. Eng. B 58, 251 (1999).Google Scholar
12.Godbole, V.P., Jagannadham, K., and Narayan, J., Appl. Phys. Lett. 67, 1322 (1995).Google Scholar
13.Godbole, V.P. and Narayan, J., Mater. Sci. Eng. B 39, 153 (1996).CrossRefGoogle Scholar
14.Jagannadham, K., Watkins, T.R. and Narayan, J., in Interfacial Engineering for Optimized Properties, edited by Briant, C.L., Carter, C.B., and Hall, E.L. (Mater. Res. Soc. Symp. Proc. 458, Pittsburgh, PA, 1997), pp. 459464.Google Scholar
15.Rahmane, M., Soucy, G., and Boulos, M.. Rev. Sci. Instrum. 66, 3424 (1995).Google Scholar
16.Asmann, M., Wank, A., Kim, H., Heberlein, J., and Pfender, E., Plasma Chem. Plasma Processing 21, 37 (2001).CrossRefGoogle Scholar
17.Pfender, E., PLASMA: General Computer Codes for the Calculations of Thermodynamic and Transport Properties (High Temperature and Plasma Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 1992).Google Scholar
18.Marshall, D.B., Noma, T., and Evans, A.G.. Commun. Am. Ceram. Soc. 65, C175–C176 (1982).Google Scholar
19.Oliver, W.C. and Pharr, G.M.. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
20.Battelle Metals and Ceramics Information Center, Engineering Property Data on Selected Ceramics, Volume 1 Nitrides (Columbus Laboratories, Columbus, OH, 1976), 5.3.2.1–1–5.3.2.1.-6.Google Scholar
21.Kosolapova, T.Y., Handbook of High Temperature Compounds: Properties, Production and Applications (Hemisphere Publishing Corp., New York, 1986).Google Scholar
22.Lewis, J.A. and Gauvin, W.H., AIChE J. 19, 982 (1973).Google Scholar
23.Boulosand, M.I., Gauvin, W.H., Can. J. Chem. Eng. 52, 355 (1974).CrossRefGoogle Scholar
24.Bhattacharyya, D. and Gauvin, W.H., AICheE J. 21, 879 (1975).CrossRefGoogle Scholar
25.Yoshida, T. and Akashi, K., J. Appl. Phys. 48, 2252 (1977).CrossRefGoogle Scholar
26.Fiszdon, J.K., Int. J. Heat Mass Transfer 22, 749 (1979).CrossRefGoogle Scholar
27.Chen, X. and Pfender, E., Plasma Chem. Plasma Processing 3, 97 (1983).Google Scholar
28.Chen, X., Lee, Y.C., and Pfender, E., Proceedings of the International Symposium on Plasma Chemistry 6, Montreal, Canada, edited by Boulos, M.I. and Munz, R.J. (Université de Sherbrooke, Québec, Canada, 1983), pp. 5158.Google Scholar
29.Chen, X. and Pfender, E., Plasma Chem. Plasma Processing 3, 351 (1983).CrossRefGoogle Scholar
30.Chen, X. and Pfender, E., J. Eng. Gas Turbines Power 107, 147 (1985).CrossRefGoogle Scholar
31.Lee, H.E., J. Phys. D: Appl. Phys. 21, 73 (1988).Google Scholar
32.Lee, H.E., J. Phys. D: Appl. Phys. 23, 12 (1990).Google Scholar
33.Chen, X. and Pfender, E., Plasma Chem. Plasma Processing 2, 293 (1982).CrossRefGoogle Scholar
34.Asmann, M., Ph.D. Thesis, University of Minnesota, Minneapolis, MN (2000).Google Scholar