Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T07:07:56.620Z Has data issue: false hasContentIssue false

Chemical vapor deposition of ruthenium and ruthenium oxide thin films for advanced complementary metal-oxide semiconductor gate electrode applications

Published online by Cambridge University Press:  01 October 2004

Filippos Papadatos
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-State Univeristy of New York, Albany, New York 12203
Steve Consiglio
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-State Univeristy of New York, Albany, New York 12203
Spyridon Skordas
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-State Univeristy of New York, Albany, New York 12203
Eric T. Eisenbraun
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-State Univeristy of New York, Albany, New York 12203
Alain E. Kaloyeros*
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-State Univeristy of New York, Albany, New York 12203
John Peck
Affiliation:
Praxair Inc., Tonawanda, New York 14151
David Thompson
Affiliation:
Praxair Inc., Tonawanda, New York 14151
Cynthia Hoover
Affiliation:
Praxair Inc., Tonawanda, New York 14151
*
a)Address all correspondence to this author.e-mail: akaloyeros@uamail.albany.edu
Get access

Abstract

A low-temperature (320–480 °C) metal-organic chemical vapor deposition (MOCVD) process was developed for the growth of ruthenium and ruthenium oxide thin films. The process used bis(ethylcyclopentadienyl)ruthenium [Ru(C5H4C2H5)2] and oxygen as, respectively, the ruthenium and oxygen sources. Systematic investigations of film formation mechanisms and associated rate limiting factors that control the nucleation and growth of the Ru and RuO2 phases led to the demonstration that the MOCVD process can be smoothly and reversibly modified to form either Ru or RuO2 through simple and straightforward modifications to the processing conditions–primarily oxygen flow and substrate temperature. In particular, films grown at low oxygen flows (50 sccm) exhibited a metallic Ru phase at processing temperatures below 480 °C. In contrast, films grown at high oxygen flow (300 sccm) were metallic Ru below 400 °C. Above 400 °C, a phase transition was observed from Ru to RuOx (0 < x < 2.0) to RuO2 as the processing temperature was gradually increased to 480 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Green, M.L., Gross, M.E., Papa, L.E., Schnoes, K.J. and Brasen, D.: Chemical vapor deposition of ruthenium and ruthenium dioxide films. J. Electrochem. Soc., 132, 2677 (1985).Google Scholar
2Kolawa, E., So, F.C.T., Pan, T-S. and Nicolet, M-A.: Reactively sputtered RuO2 diffusion barriers. Appl. Phys. Lett. 50, 854 (1987).CrossRefGoogle Scholar
3Krusin-Elbaum, L., Wittmer, M. and Yee, D.S.: Characterization of reactively sputtered ruthenium dioxide for very large scale integrated metallization. Appl. Phys. Lett. 50, 1879 (1987).Google Scholar
4Si, J. and Desu, S.B.: RuO2 films by metal-organic chemical vapor deposition. J. Mater. Res. 8, 2644 (1993).Google Scholar
5Zhong, H., Heuss, G. and Misra, V.: Electrical properties of RuO2 gate electrodes for dual metal gate Si-CMOS. IEEE Electr. Dev. Lett . 21, 593 (2000).CrossRefGoogle Scholar
6Zhong, H., Heuss, G., Misra, V., Luan, H., Lee, C-H. and Kwong, D-L.: Characterization of RuO2 electrodes on Zr silicate and ZrO2 dielectrics. Appl. Phys. Lett. 78, 1134 (2001).CrossRefGoogle Scholar
7Zhong, H., Heuss, G., Suh, Y-S., Hong, S-N., Misra, V., Kelly, J. and Parsons, G. in Gate Stack and Silicide Issues in Silicon Processing II, edited by Campbell, S.A., Clevenger, L.A., Griffin, P.B., and Hobbs, C.C., (Mater. Res. Soc. Symp. Proc. 670, Warrendale, PA, 2002), p. K3.1.1.Google Scholar
8Wilk, D., Wallace, R.M. and Anthony, J.M.: High-k gate dielectrics: Current status and material properties considerations. J. Appl. Phys. 89, 5243 (2001).Google Scholar
9Meng, L-J. and Santos, M.P. dos: Characterization of RuO2 films prepared by rf reactive magnetron sputtering. Appl. Surf. Sci. 147, 94 (1999).Google Scholar
10Hergenrother, J.M., Wilk, G.D., Nigam, T., Klemens, F.P., Monroe, D., Silverman, P.J., Sorsch, T.W., Busch, B., Green, M.L., Baker, M.R., Boone, T., Bude, M.K., Ciampa, N.A., Ferry, E.J., Fiory, A.T., Hillenius, S.J., Jacobson, D.C., Johnson, R.W., Kalavade, P., Keller, R.C., King, C.A., Kornblit, A., Krautter, H.W., Lee, J.T-C., Mansfield, W.M., Miner, J.F., Morris, M.D., Oh, S-H., Rosamilia, J.M., Sapjeta, B.J., Short, K., Steiner, K., Muller, D.A., Voyles, P.M., Grazul, J.L., Shero, E.J., Givens, M.E., Pomarede, C., Mazanec, M., and Werkhoven, C.: In Electron Devices Meeting, (IEDM Technical Digest. International, Washington, DC, 2001), pp. 3.1.1–3.1.4.Google Scholar
11Hergenrother, J.M., Monroe, D., Klemens, F.P., Kornblit, A., Weber, G.R., Mansfield, W.M., Baker, M.R., Baumann, F.H., Bolan, K.J., Bower, J.E., Ciampa, N.A., Cirelli, R.A., Colonell, J.I., Eaglesham, D.J., Frackoviak, J., Gossman, H.J., Green, M.L., Hillenius, S.J., King, C.A., Kleinman, R.N., Lai, W.Y-C., Lee, J.T-C., Liu, R.C., Maynard, H.L., Morris, M.D., Oh, S-H., Pai, C-S., Rafferty, C.S., Rosamilia, J.M., Sorsch, T.W., Vuong, H-H.: In Electron Devices Meeting, (IEDM Technical Digest. International, Washington, DC, 2001), Sec. 76-3, pp. 7578Google Scholar
12Pierson, H.O.: Handbook of Chemical Vapor Deposition: Principles, Technology, and Applications, 2nd ed. (Noyes Publications/William Andrew Publishing, LLC, Norwich, New York, 1992), pp. 3, 32Google Scholar
13Dey, S.K., Goswami, J., Das, A., Cao, W., Floyd, M. and Carpenter, R.: Growth and nanostructure of conformal ruthenium films by liquid-source metalorganic chemical vapor deposition. J. App. Phys . 94, 774 (2003).Google Scholar
14Papadatos, F., Skordas, S., Patel, Z., Consiglio, S. and Eisenbraun, E. in Silicon Materials—Processing Characterization and Reliability, edited by Veteran, J.L., O’Meara, D.L., Misra, V., and Ho, P.S. (Mater. Res. Soc. Symp. Proc. 716, Warrendale, PA, 2002), p. B2.4.Google Scholar
15Park, S-E., Kim, H-M., Kim, K-B. and Min, S-H.: RuO2 thin film fabrication with plasma-enhanced chemical vapor deposition. Thin Solid Films 341, 52 (1999).CrossRefGoogle Scholar
16Kang, S.Y., Choi, K.H., Lee, S.K., Hwang, C.S. and Kim, H.J.: Thermodynamic calculations and metalorganic chemical vapor deposition of ruthenium thin films using bis(ethyl-π-cyclopentadienyl)Ru for memory applications. J. Electrochem. Soc. 147, 1161 (2000).Google Scholar
17Aoyama, T., Kiyotoshi, M., Yamazaki, S. and Eguchi, K.: Chemical vapor deposition of Ru and its application in (Ba, Sr)TiO3 capacitors for future dynamic random access memories. Jpn. J. Appl. Phys. 38, 2194 (1999).Google Scholar
18Kadoshima, M., Nabatame, T., Hiratani, M., Nakamura, Y., Asano, I. and Suzuki, T.: Ruthenium films prepared by metalorganic chemical vapor deposition using Ru(dpm)3 dissolved with tetrahydrofuran Solvent. Jpn. J. Appl. Phys. 41, L347 (2002).Google Scholar
19Smith, K.C., Sun, Y.M., Mettlach, N.R., Hance, R.L. and White, J.M.: Evaluation of precursors for chemical vapor deposition of ruthenium. Thin Solid Films 376, 73 (2000).Google Scholar
20Ganesan, P.G., Eizenberg, M. and Dornfest, C.: Chemical vapor deposited RuOx films – Effect of oxygen flow rate. Electrochem Solid-State Lett. 149, G510 (2002).Google Scholar
21Matsui, Y., Hiratani, M., Nabatame, T., Shimamoto, Y. and Kimura, S.: Growth mechanism of Ru films prepared by chemical vapor deposition using bis(ethylcyclopentadienyl)ruthenium precursor. Electrochem Solid-State Lett. 4, C9 (2001).Google Scholar
22Shibutami, T., Kawano, K., Oshima, N., Yokoyama, S. and Funakubo, H.: Ruthenium film with high nuclear density deposited by MOCVD using a novel liquid precursor. Electrochem Solid-State Lett. 6, C117 (2003).Google Scholar
23Aoyama, T. and Eguchi, K.: Ruthenium films prepared by liquid source chemical vapor deposition using bis-(ethylcyclopentadienyl)ruthenium. J. Appl. Phys. 38, L1134 (1999).CrossRefGoogle Scholar