Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T03:35:24.214Z Has data issue: false hasContentIssue false

Coherent island formation of Cu2O films grown by chemical vapor deposition on MgO(110)

Published online by Cambridge University Press:  31 January 2011

P. R. Markworth
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
X. Liu
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
J. Y. Dai
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
W. Fan
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
T. J. Marks
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
R. P. H. Chang*
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208
*
a)Address all correspondence to this author.
Get access

Abstract

Cuprous oxide (Cu2O) films have been grown on single-crystal MgO(110) substrates by a chemical vapor deposition process in the temperature range 690–790 °C. X-ray diffraction measurements show that phase-pure, highly oriented Cu2O films form at these temperatures. The Cu2O films are observed to grow by an island-formation mechanism on this substrate. Films grown at 690 °C uniformly coat the substrate except for micropores between grains. However, at a growth temperature of 790 °C, an isolated, three-dimensional island morphology develops. Using a transmission electron microscopy and atomic force microscope, both dome- and hut-shaped islands are observed and are shown to be coherent and epitaxial. The isolated, coherent islands form under high mobility growth conditions where geometric strain relaxation occurs before misfit dislocation can be introduced. This rare observation for oxides is attributed to the relatively weak bonding of Cu2O, which also has a relatively low melting temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lin, J.L. and Wolfe, J.P., Phys. Rev. Lett. 71, 1222 (1993).CrossRefGoogle Scholar
2Snoke, D., Wolfe, J.P., and Mysyrowicz, A., Phys. Rev. Lett. 59, 827 (1987).CrossRefGoogle Scholar
3Snoke, D.W., Wolfe, J.P., and Mysyrowicz, A., Phys. Rev. B 41, 11171 (1990).CrossRefGoogle Scholar
4Snoke, D.W., Wolfe, J.P., and Mysyrowicz, A., Phys. Rev. Lett. 64, 2543 (1990).CrossRefGoogle Scholar
5Snoke, D.W., Lin, J.L., and Wolfe, J.P., Phys. Rev. B 43, 1226 (1991).CrossRefGoogle Scholar
6White, G.K., J. Phys. C 11, 2171 (1978).CrossRefGoogle Scholar
7Bloch, P.D. and Schwab, C., Phys. Rev. Lett. 41, 514 (1978).CrossRefGoogle Scholar
8Ogale, S.B., Bilurkar, P.G., Mate, N., Kanetkar, S.M., Parikh, N., and Patnaik, B., J. Appl. Phys. 72, 3765 (1992).Google Scholar
9Ogale, S.B., Bilurkar, P.G., and Mate, N., J. Cryst. Growth 128, 714 (1993).Google Scholar
10Bench, M.W., Sartain, K.B., Heffelfinger, J.R., and Carter, C.B., in Mechanisms of Thin-Film Evolution, edited by Yalisove, S.M., Thomson, C.V., and Eaglesham, D.J. (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 491.Google Scholar
11Condorelli, G.G., Malandrino, G., and Fragalà, I.L., Chem. Vap. Deposition 5, 21 (1999).3.0.CO;2-9>CrossRefGoogle Scholar
12Ottosson, M., Lu, J., and Carlsson, J-O., J. Cryst. Growth 151, 305 (1995).Google Scholar
13Parretta, A., Jayaraj, M.K., Nocera, A.D., Loreti, S., Quercia, L., and Agati, A., Phys. Status Solidi A 155, 399 (1996).CrossRefGoogle Scholar
14Miller, D.J., Hettinger, J.D., Chiarello, R.P., and Kim, H.K., J. Mater. Res. 7, 2828 (1992).Google Scholar
15Kawaguchi, K., Kita, R., Nishiyama, M., and Morishita, T., J. Cryst. Growth 143, 221 (1994).CrossRefGoogle Scholar
16Evans, R.C., An Introduction to Crystal Chemistry (C.B.L.S., Marietta, OH, 1964).Google Scholar
17Fan, W., Markworth, P.R., Marks, T.J., and Chang, R.P.H., Mater. Chem. Phys. 70, 191 (2001).CrossRefGoogle Scholar
18Brower, W.S. and Parker, H.S., J. Cryst. Growth 8, 227 (1971).CrossRefGoogle Scholar
19Elliott, J.F., Metall. Trans. B 7B, 17 (1976).CrossRefGoogle Scholar
20Schmidt-Whitley, R.D., Martinez-Clemente, M., and Revcolevschi, A., J. Cryst. Growth 23, 113 (1974).Google Scholar
21Markworth, P.R., Chang, R.P.H., Sun, Y., Wong, G.K., and Ketterson, J.B., J. Mater. Res. (in press).Google Scholar
22Ohring, M., The Materials Science of Thin Films (Academic Press, San Diego, CA, 1992).Google Scholar
23Ross, F.M., Tersoff, J., and Tromp, R.M., Phys. Rev. Lett. 80, 984 (1998).Google Scholar
24Liu, C-P., Gibson, J.M., Cahill, D.C., Kamins, T.I., Basile, D.P., and Williams, R.S., Phys. Rev. Lett. 84, 1958 (2000).Google Scholar
25Williams, R.S., Medeiros-Ribeiro, G., Kamins, T.I., and Ohlberg, D.A.A., J. Phys. Chem. B 102, 9605 (1998).Google Scholar
26Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
27Hammar, M., LeGoues, F.K., Tersoff, J., Reuter, M.C., and Tromp, R.M., Surf. Sci. 349, 129 (1996).CrossRefGoogle Scholar
28Abdallah, M., Berberzier, I., Dawson, P., Serpentini, M., Bremond, G., and Joyce, B., Thin Solid Films 336, 256 (1998).CrossRefGoogle Scholar
29Goryll, M., Vascan, L., and Lüth, H., Thin Solid Films 336, 244 (1998).Google Scholar
30Medeiros-Ribeiro, G., Bratkovski, A.M., Kamins, T.I., Ohlberg, D.A.A., and Williams, R.S., Science 279, 353 (1998).CrossRefGoogle Scholar
31Boucaud, P., Thanh, V.L., Sauvage, S., Debarre, D., Bouchier, D., and Lourtioz, J-M., Thin Solid Films 336, 240 (1998).Google Scholar
32Goryll, M., Vescan, L., Schmidt, K., Mesters, S., and Luüth, H., Appl. Phys. Lett 71, 410 (1997).CrossRefGoogle Scholar
33Medeiros-Ribeiro, G., Kamins, T.I., Ohlberg, D.A.A., and Williams, R.S., Phys. Rev. B 58, 3533 (1998).CrossRefGoogle Scholar
34Eaglesham, D.J. and Hull, R., Mater. Sci. Eng. B 30, 197 (1995).CrossRefGoogle Scholar
35Krishnamurthy, M., Drucker, J.S., and Venables, J.A., J. Appl. Phys. 69, 6461 (1991).CrossRefGoogle Scholar
36Jesson, D.E., Chen, K.M., Pennycook, S.J., Thundat, T., and Warmack, R.J., Phys. Rev. Lett. 77, 1330 (1996).Google Scholar
37Floro, J.A., Chason, E., Freund, L.B., Twesten, R.D., Hwang, R.Q., and Lucadamo, G.A., Phys. Rev. B 59, 1990 (1999).CrossRefGoogle Scholar
38Floro, J.A., Lucadamo, G.A., Chason, E., Freund, L.B., Sinclair, M., Twesten, R.D., and Hwang, R.Q., Phys. Rev. Lett. 80, 4717 (1998).Google Scholar
39Floro, J.A., Chason, E., Twesten, R.D., Hwang, R.Q., and Freund, L.B., Phys. Rev. Lett. 79, 3946 (1997).Google Scholar
40Floro, J.A., Chason, E., Lee, S.R., Twesten, R.D., Hwang, R.Q., and Freund, L.B., J. Electron. Mater. 26, 969 (1997).Google Scholar
41Eaglesham, D.J., Kvam, E.P., Maher, D.M., Humphreys, C.J., and Bean, J.C., Philos. Mag. A 59, 1059 (1989).CrossRefGoogle Scholar
42Sutter, P., Mateeva, E., Sullivan, J.S., and Lagally, M.G., Thin Solid Films 336, 262 (1998).CrossRefGoogle Scholar
43Mo, Y-W., Savage, D.E., Swartzentruber, B.S., and Lagally, M.G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
44Steinfort, A.J., Scholte, P.M.O., Ettema, A., Tuinstra, F., Nielsen, M., Landemark, E., Smilgies, D-M., Feidenhans’l, R., Falkenberg, G., Seehofer, L., and Johnson, R.L., Phys. Rev. Lett. 77, 2009 (1996).CrossRefGoogle Scholar
45Spencer, B.J., Voorhees, P.W., and Davis, S.H., J. Appl. Phys. 73, 4955 (1993).CrossRefGoogle Scholar
46Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
47Lide, D.R., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1999).Google Scholar
48Freund, L.B., Int. J. Solids Struct. 32, 911 (1995).CrossRefGoogle Scholar