Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T01:23:07.339Z Has data issue: false hasContentIssue false

Coherent phase equilibria in systems possessing a consolute critical point

Published online by Cambridge University Press:  31 January 2011

C. S. Chiang
Affiliation:
Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University, Pittsburgh, PA 15213-3890
William C. Johnson
Affiliation:
Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University, Pittsburgh, PA 15213-3890
Get access

Abstract

The influence of coherency strains on phase equilibria in a two-phase microstructure is examined for a binary or pseudobinary alloy system possessing a consolute critical point (chemical miscibility gap). The qualitative features of phase equilibria, including the limits of metastability (chemical spinodal), are shown to depend critically on the mechanical loading conditions and the geometric arrangement of the phases in the microstructure. If the elastic state of a phase in a two-phase coherent system is independent of the presence of the other phase, then the equilibrium characteristics usually associated with fluid systems should be observed, even though the system is nonhydrostatically stressed. If the elastic state of a phase depends upon the presence of the other phase, then the equilibrium characteristics that have come to be associated with coherent systems should be observed; tie lines and field lines do not coincide, the common tangent construction is invalid, and Gibbs phase rule is not applicable.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Cahn, J. W.Acta Metall. 10, 907(1962).CrossRefGoogle Scholar
2Cahn, J. W.Acta Metall. 9, 795(1961).CrossRefGoogle Scholar
3Cahn, J. W.Acta Metall. 10, 179(1962).CrossRefGoogle Scholar
4Williams, R.O.Metall. Trans. A 11A, 247(1980).CrossRefGoogle Scholar
5Williams, R. O.CALPHAD 8, 1(1984).Google Scholar
6Cahn, J. W. and Larche, F. C.Acta Metall. 32, 1915(1984).CrossRefGoogle Scholar
7Roitburd, A.L.Sov. Phys. Solid State 26, 1229(1984).Google Scholar
8Roitburd, A.L.Sov. Phys. Solid State 27, 598(1985).Google Scholar
9Johnson, W.C. and Voorhees, P. W.Metall. Trans. A 18A, 1213(1987).CrossRefGoogle Scholar
10Johnson, W.C.Mater. Res. Soc. Symp. Proc, edited by Barbee, T. W.Spaepen, F. and Greer, L. 103, 61(1987).CrossRefGoogle Scholar
11Johnson, W.C.Metall. Trans. A 18A, 1093(1987).CrossRefGoogle Scholar
12Johnson, W.C. and Chiang, C.S.J. Appl. Phys. 64, 1155(1988).CrossRefGoogle Scholar
13Mbaye, A. A.Zunger, A. and Wood, D.M.Appl. Phys. Lett. 49, 782(1986).CrossRefGoogle Scholar
14Hilliard, J. E. in Phase Transformations, edited by Aaronson, H. I. (ASM, Metals Park, OH, 1968), Ch. 12.Google Scholar
15Larche, F. C. and Cahn, J. W.Acta Metall. 21, 1051(1973).CrossRefGoogle Scholar
16Allen, S. M. and Cahn, J. W.Bull. Alloy Phase Diagrams 3, 287(1982).CrossRefGoogle Scholar
17Neuberger, M.Handbook of Electronic Materials (IFI-Plenum, New York, 1971), Vol. 2.CrossRefGoogle Scholar
18Stringfellow, G.B.J. Elect. Mater. 11, 903(1982).CrossRefGoogle Scholar
19Mbaye, A. A.Wood, D.M. and Zunger, A.Phys. Rev. B 37, 3008(1988).CrossRefGoogle Scholar
20Bruinsma, R. and Zangwill, A.Europhys. Lett. 4, 729(1987).CrossRefGoogle Scholar
21Larche, F. C.Johnson, W. C.Chiang, C.S. and Martin, G. J. Appl. Phys. (in press).Google Scholar
22Barnett, S.A.Kramer, B.Romano, L.T.Shah, S.I.Ray, M. A.Fang, S. and Greene, J. E.Mat. Res. Soc. Symp. Proc. 37, 285(1985).CrossRefGoogle Scholar
23Wallace, E. Carnegie Mellon University, private communication.Google Scholar
24Murray, J.Int. Metals. Rev. 30, 211(1985).Google Scholar
25Aaronson, H. I. Carnegie Mellon University, unpublished research.Google Scholar