Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T01:17:26.007Z Has data issue: false hasContentIssue false

Comparison of diamond-like carbon film deposition by electron cyclotron resonance with benzene and methane

Published online by Cambridge University Press:  31 January 2011

P. S. Andry
Affiliation:
Department of Electrical Engineering, University of Vermont, Burlington, Vermont 05405–0156
P. W. Pastel
Affiliation:
Department of Electrical Engineering, University of Vermont, Burlington, Vermont 05405–0156
W. J. Varhue
Affiliation:
Department of Electrical Engineering, University of Vermont, Burlington, Vermont 05405–0156
Get access

Abstract

A comparative study of the deposition of diamond-like carbon films using methane or benzene in a microwave electron cyclotron resonance plasma-enhanced chemical vapor deposition system has been performed. Process variables studied were reactor pressure, applied radio frequency substrate bias, and microwave power. The plasma stream was characterized using optical emission spectroscopy and mass spectrometry. Film properties studied included optical energy gap, total hydrogen content, integrated C-H stretch absorption, index of refraction, and Raman spectra. The use of a high C/H ratio reactant such as benzene was found to be advantageous over methane in that higher deposition rates were possible and the resultant films exhibit diamond-like properties without the application of large substrate biases. Another result of this investigation was further confirmation that hard carbon films contain a significant quantity of nonbonded hydrogen [A. Grill and V. Patel, Appl. Phys. Lett. 60 (17), 2089 (1992)].

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grill, A. and Patel, V., Appl. Phys. Lett. 60 (17), 2089 (1992).CrossRefGoogle Scholar
2.Angus, J., Koidl, P., and Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (CRC Press, Inc., Boca Raton, FL, 1986).Google Scholar
3.Robertson, J., Prog. Solid State Chem. 21 (B33), 199 (1991).CrossRefGoogle Scholar
4.Tsai, H., and Bogy, D., J. Vac. Sci. Technol. A 5, 32873312 (1987).CrossRefGoogle Scholar
5.Ono, A., Baba, T., Funamoto, H., and Nishikawa, A., Jpn. J. Appl. Phys. 25, L808–L810 (1986).CrossRefGoogle Scholar
6.Dischler, B., Bubenzer, A., and Koidl, P., Appl. Phys. Lett. 42, 636638 (1983).CrossRefGoogle Scholar
7.Keqiang, C.et al., J. Vac. Sci. Technol. A 4, 828831 (1986).Google Scholar
8.Matsuo, S. and Kiuchi, M., Jpn. J. Appl. Phys. 22, L210–L212 (1983).CrossRefGoogle Scholar
9.Pool, F. and Shing, Y., J. Appl. Phys. 68, 6265 (1990).CrossRefGoogle Scholar
10.Kuo, S. C., Kunhardt, E. E., and Srivatsa, A. R., Appl. Phys. Lett. 59 (20), 2532 (1991).CrossRefGoogle Scholar
11.Fujita, T. and Matsumoto, O., J. Electrochem. Soc. 136, 26242629 (1989).CrossRefGoogle Scholar
12.Pastel, P. and Varhue, W., J. Vac. Sci. Technol. A 9 (3), 11291133 (1991).CrossRefGoogle Scholar
13.Wild, C., Wagner, J., and Koidl, P., J. Vac. Sci. Technol. A 5 (4), 2227 (1987).CrossRefGoogle Scholar
14.Wagner, J., Wild, C., Pohl, F., and Koidl, P., Appl. Phys. Lett. 48, 106108 (1986).CrossRefGoogle Scholar
15.Mutsukura, N., Inoue, S., and Machi, Y., J. Appl. Phys. 72 (1), 43 (1992).CrossRefGoogle Scholar
16.Grill, A., Cold Plasmas in Material Fabrication (IEEE Press, New York, 1994), p. 15.CrossRefGoogle Scholar
17.Dischler, B., Bubenzer, A., and Koidl, P., Solid State Commun. 48, 105108 (1983).Google Scholar
18.Craig, S. and Harding, G., Thin Solid Films 97, 345361 (1982).CrossRefGoogle Scholar
19.Lanford, W. and Rand, M., J. Appl. Phys. 49, 24732477 (1978).CrossRefGoogle Scholar
20.Coburn, J. and Chen, M., J. Appl. Phys. 51, 31343136 (1980).CrossRefGoogle Scholar
21.Dreyfus, R., Jasinski, J., Walkup, R., and Selwyn, G., Pure Appl. Chem. 57, 12651276 (1985).CrossRefGoogle Scholar
22.Gottscho, R. and Miller, T., Pure Appl. Chem. 56, 189208 (1984).CrossRefGoogle Scholar
23.Aarts, J., Beenakker, C., and De Heer, F., Physica 53, 32 (1971).CrossRefGoogle Scholar
24.Roth, R. M. and Jarman, R. M., in Plasma Processing and Synthesis of Materials, edited by Apelion, D. and Szekely, J. (Mater. Res. Soc. Symp. Proc. 98, Pittsburgh, PA, 1987), p. 327.Google Scholar
25.Yasuda, H., in Thin Film Processes, edited by Vossen, J. and Kern, W. (Academic Press, New York, 1978).Google Scholar
26.Weng, Y., Kushner, M., Appl. Phys. 72 (1), 33 (1992).Google Scholar
27.Chabal, Y. J. and Patel, C. K. N., Rev. Mod. Phys. 59 (4), 835 (1987).CrossRefGoogle Scholar
28.Fromm, E. and Gebhardt, E., Gase und Kohlenstoff in Metallen (Springer-Verlag, Berlin, 1976).Google Scholar
29.Robertson, J. and O'Reilly, , E. P. Phys. Rev. 35 (6), 2946 (1987).Google Scholar
30.Jiang, X., Reichelt, K., and Stritzker, B., J. Appl. Phys. 68 (3), 1018 (1990).Google Scholar
31.Lifshitz, Y., Kasi, S. R., and Rabalais, J.W., Phys. Rev. Lett. 62, 1290 (1989)CrossRefGoogle Scholar
32.Tamor, M. A., Haire, J. A., Wu, C. H., and Hass, K. C., Appl. Phys. Lett. 54 (2), 123 (1989).Google Scholar
33.Dasgupta, D., Demichelis, F., Pirri, C. F., and Tagliaferro, A., Phys. Rev. B 43, 2131 (1991).CrossRefGoogle Scholar
34.Dillon, R. O., Wooliam, J.A., and Katkanant, V., Phys. Rev. B 29 3482 (1984).Google Scholar
35.Cho, N. H., Veirs, D. K., Ager, J. W. III, Rubin, M. D., Hopper, C. B., and Bogy, D. B., J. Appl. Phys. 71 (5), 2243 (1992).CrossRefGoogle Scholar
36.Sinh, K., Menedez, J., Sankey, O. F., Johnson, D. A., Varhue, W. J., Kidder, J. N., Pastel, P. W., and Lanford, W., Appl. Phys. Lett. 60 (5), 562 (1992).CrossRefGoogle Scholar