Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T04:17:08.141Z Has data issue: false hasContentIssue false

Computer simulations of interactions between ultrafine alumina particles produced by an arc discharge

Published online by Cambridge University Press:  31 January 2011

M. H. Teng
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2225 N. Campus Dr., Evanston, Illinois 60208
L. D. Marks
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2225 N. Campus Dr., Evanston, Illinois 60208
D. L. Johnson
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2225 N. Campus Dr., Evanston, Illinois 60208
Get access

Abstract

We wrote two computer programs, 3D and BUMP, to interpret transmission electron microscope (TEM) micrographs made during a study of the initial stage sintering of ultrafine alumina particles (UFP's, 20–50 nm in diameter). The first simulated the 3D geometric relationships of particles, from which we concluded that surface diffusion was the predominant sintering mechanism because no shrinkage occurred. BUMP simulated random contact of two particles and showed that the particle chains that formed before sintering were not formed purely by chance. Instead the particles experienced a rearrangement process (rotation and sliding) which reduced the total surface energy.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kuczynski, G. C., Trans. Am. Inst. Min. (Metall.) Eng. 185, 169 (1949).Google Scholar
2.Herring, C., in The Physics of Powder Metallurgy, edited by Kingston, W. E. (McGraw-Hill Book Co. Inc., Reading, MA, 1951), Chap. 8, p. 143.Google Scholar
3.Herring, C., in Structure and Properties of Solid Surfaces, edited by Gomer, R. and Smith, C. S. (University of Chicago, Chicago, 1953), Chap. I, p. 5.Google Scholar
4.Kingery, W. D. and Berg, M., J. Appl. Phys. 26, 1205 (1955).CrossRefGoogle Scholar
5.Mullins, W. W., J. Appl. Phys. 28, 333 (1957).CrossRefGoogle Scholar
6.Coble, R. L., J. Am. Ceram. Soc. 41, 55 (1958).CrossRefGoogle Scholar
7.Coble, R. L., J. Appl. Phys. 32, 787 (1961).CrossRefGoogle Scholar
8.Coble, R. L., J. Appl. Phys. 32, 793 (1961).CrossRefGoogle Scholar
9.Coble, R. L., J. Appl. Phys. 41, 4798 (1970).CrossRefGoogle Scholar
10.Paladino, A. E. and Coble, R. L., J. Am. Ceram. Soc. 46, 133 (1963).CrossRefGoogle Scholar
11.Nichols, F. A. and Mullin, W. W., J. Appl. Phys. 36, 1826 (1965).CrossRefGoogle Scholar
12.Nichols, F. A., J. Appl. Phys. 37, 2805 (1966).CrossRefGoogle Scholar
13.Coble, R. L. and Gupta, T. K., in Sintering and Related Phenomena, edited by Kuczynski, G. C., Hooten, N. A., and Gibbon, C. F. (1967), p. 423.Google Scholar
14.Johnson, D. L., J. Appl. Phys. 40, 192 (1969).CrossRefGoogle Scholar
15.Johnson, D. L., J. Am. Ceram. Soc. 53, 574 (1970).CrossRefGoogle Scholar
16.Coble, R. L. and Cannon, R. M., Mater. Sci. Res. 11, 151 (1978).Google Scholar
17.Coblenz, W. S., Dynys, J. M., Cannon, R. M., and Coble, R. L., in Sintering Processes, edited by Kuczynski, G. C. (Materials Science Research 13, Plenum Press, New York, 1980), p. 141.CrossRefGoogle Scholar
18.Bonevich, J. E., Ph.D. dissertation, Northwestern University, Evanston, IL (1991).Google Scholar
19.Bonevich, J. E., Teng, M. H., Johnson, D. L., and Marks, L. D., Rev. Sci. Instrum. 62, 3061 (1991).CrossRefGoogle Scholar
20.Teng, M. H., Ph.D. dissertation, Northwestern University, Evanston, IL (1992).Google Scholar
21.Bonevich, J. E. and Marks, L. D., J. Mater. Res. 7, 1489 (1992).CrossRefGoogle Scholar
22.Teng, M. H., Bonevich, J. E., Marks, L. D., and Johnson, D. L., unpublished.Google Scholar
23.Iijima, S., Jpn. J. Appl. Phys. 23, L347 (1984).CrossRefGoogle Scholar
24.Iijima, S., J. Elec. Micro. 34, 249 (1985).Google Scholar
25.Warble, C. E., J. Mater. Sci. 20, 2512 (1985).CrossRefGoogle Scholar
26.Hirayama, T., J. Am. Ceram. Soc. 70, C122 (1987).CrossRefGoogle Scholar
27.Bonevich, J. E., in Proceedings of the 47th Annual Meeting of the Electron Microscopy Society of America, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1989), p. 258.Google Scholar
28.Kaito, C., Fujita, K., Shibahara, H., and Shiojiri, M., Jpn. J. Appl. Phys. 16, 697 (1977).CrossRefGoogle Scholar
29.Gibbs, J. W., The Collected Works, Vol. 1, Thermodynamics (Longmans, New York, 1931), p. 320.Google Scholar
30.Curie, P., Bull. Soc. Mineral. Fr. 8, 145 (1885).Google Scholar
31.Wulff, G., Z. Kristallogr. 34, 449 (1901).CrossRefGoogle Scholar
32.Herring, C., Phys. Rev. 82, 87 (1951).CrossRefGoogle Scholar
33.Kimoto, K., Kamiya, Y., Nonoyama, M., and Uyeda, R., Jpn. J. Appl. Phys. 2, 702 (1963).CrossRefGoogle Scholar
34.Thölén, A. R., Acta Metall. 27, 1765 (1979).CrossRefGoogle Scholar
35.Thölén, A. R., Physica Scripta 37, 231 (1988).CrossRefGoogle Scholar