Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T23:34:59.247Z Has data issue: false hasContentIssue false

Controlled generation of ferromagnetic martensite from paramagnetic austenite in AISI 316L austenitic stainless steel

Published online by Cambridge University Press:  31 January 2011

E. Menéndez
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; and Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany
J. Sort*
Affiliation:
Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
J. Fassbender
Affiliation:
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany
M.D. Baró
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
J. Nogués
Affiliation:
Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut Català de Nanotecnologia, Edifici CM7, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
*
a) Address all correspondence to this author. e-mail: jordi.sort@uab.es
Get access

Abstract

The strain-induced austenite (γ) to martensite (α′) transformation in AISI 316L austenitic stainless steel, either in powders or bulk specimens, has been investigated. The phase transformation is accomplished using either ball-milling processes (in powders)—dynamic approach—or by uniaxial compression procedures (in bulk specimens)—quasi-static approach. Remarkably, an increase in the loading rate causes opposite effects in each case: (i) it increases the amount of transformed α′ in ball-milling procedures, but (ii) it decreases the amount of α′ in pressed samples. Both the microstructural changes (e.g., crystallite size refinement, microstrains, or type of stacking faults) in the parent γ phase and the role of the concomitant temperature rise during deformation seem to be responsible for these opposite trends. Furthermore, the results show the correlation between the γ → α′ phase transformation and the development of magnetism and enhanced hardness.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chawla, S.L., Gupta, R.K.: Materials Selection for Corrosion Control(ASM International Materials Park, OH 1997)Google Scholar
2.Hecker, S.S., Stout, M.G., Staudhammer, K.P., Smith, J.L.: Effects of strain state and strain rate on deformation-induced transformation in 304 stainless-steel. 1. Magnetic measurements and mechanical-behavior. Metall. Trans. A 13, 619 (1982)CrossRefGoogle Scholar
3.Nagy, E., Mertinger, V., Tranta, F., Sólyom, J.: Deformation induced martensitic transformation in stainless steels. Mater. Sci. Eng., A 378, 308 (2004)CrossRefGoogle Scholar
4.Ishigaki, H., Konishi, Y., Kondo, K., Koterazawa, K.: Possibility as a magnetic recording media of austenitic stainless steel using stress-induced phase transformation. J. Magn. Magn. Mater. 193, 466 (1999)CrossRefGoogle Scholar
5.Bourell, D.L., Rizk, A.: Influence of martensite transformation strain on the ductility of dual-phase steels. Acta Metall. 31, 609 (1983)CrossRefGoogle Scholar
6.Bruemmer, S.M., Was, G.S.: Microstructural and micromechanical mechanisms controlling intergranular stress-corrosion cracking in light-water-reactor systems. J. Nucl. Mater. 216, 348 (1994)CrossRefGoogle Scholar
7.Han, H.N., Lee, C.G., Suh, D-W., Kim, S-J.: A microstructure-based analysis for transformation induced plasticity and mechanically induced martensitic transformation. Mater. Sci. Eng., A 485, 224 (2008)CrossRefGoogle Scholar
8.Nagae, Y.: A study on detection of creep damage before crack initiation in austenitic stainless steel. Mater. Sci. Eng., A 387, 665 (2004)CrossRefGoogle Scholar
9.Mumtaz, K., Takahashi, S., Echigoya, J., Kamada, Y., Zhang, L.F., Kikuchi, H., Ara, K., Sato, M.: Magnetic measurements of martensitic transformation in austenitic stainless steel after room temperature rolling. J. Mater. Sci. 39, 85 (2004)CrossRefGoogle Scholar
10.Sort, J., Concustell, A., Menéndez, E., Suriñach, S., Baró, M.D., Farran, J., Nogués, J.: Selective generation of local ferromagnetism in austenitic stainless steel using nanoindentation. Appl. Phys. Lett. 89, 032509 (2006)CrossRefGoogle Scholar
11.Ensinger, W.: Modification of mechanical and chemical surface properties of metals by plasma immersion ion implantation. Surf. Coat. Technol. 101, 341 (1998)CrossRefGoogle Scholar
12.Ni, Z.C., Wang, X.W., Wu, E.D., Liu, G.: Martensitic phase transformations in the nanostructured surface layers induced by mechanical attrition treatment. J. Appl. Phys. 98, 114319 (2005)CrossRefGoogle Scholar
13.Lee, W-S., Lin, C-F.: The morphologies and characteristics of impact-induced martensite in 304L stainless steel. Scr. Mater. 43, 777 (2000)CrossRefGoogle Scholar
14.Fischer, F.D., Reisner, G., Werner, E., Tanaka, K., Cailletaud, G., Antretter, T.: A new view on transformation induced plasticity (TRIP). Int. J. Plast. 16, 723 (2000)CrossRefGoogle Scholar
15.Post, J., Datta, K., Beyer, J.: A macroscopic constitutive model for a metastable austenitic stainless steel. Mater. Sci. Eng., A 485, 290 (2008)CrossRefGoogle Scholar
16.Umemoto, M., Huang, B., Tsuchiya, K., Suzuki, N.: Formation of nanocrystalline structure in steels by ball drop test. Scr. Mater. 46, 383 (2002)CrossRefGoogle Scholar
17.Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001)CrossRefGoogle Scholar
18.Young, R.A.: The Rietveld Method(International Union of Crystallography, Oxford University Press Oxford 1995)Google Scholar
19.Warren, B.E., Averbach, B.L.: The effect of cold-work distortion on x-ray patterns. J. Appl. Phys. 21, 595 (1950)CrossRefGoogle Scholar
20.Lutterotti, L., Scardi, P.: Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Crystallogr. 23, 246 (1990)CrossRefGoogle Scholar
21.Enzo, S., Fagherazzi, G., Benedetti, A., Polizzi, S.: A profile-fitting procedure for analysis of broadened x-ray-diffraction peaks. 1. Methodology. J. Appl. Crystallogr. 21, 536 (1988)CrossRefGoogle Scholar
22.Sort, J., Zhilyaev, A., Zielinska, M., Nogués, J., Suriñach, S., Thibault, J., Baró, M.D.: Microstructural effects and large microhardness in cobalt processed by high pressure torsion consolidation of ball milled powders. Acta Mater. 51, 6385 (2003)CrossRefGoogle Scholar
23.Lecroise, F., Pineau, A.: Martensitic transformations induced by plastic-deformation in Fe–Ni–Cr–C system. Metall. Trans. 3, 387 (1972)Google Scholar
24.Warren, B.E.: X-ray Diffraction(Addison-Wesley Reading, MA 1969)Google Scholar
25.Chikazumi, S.: Physics of Magnetism(John Wiley & Sons Inc. New York 1964)Google Scholar
26.Huang, H., Ding, J., McCormick, P.G.: Microstructural evolution of 304 stainless steel during mechanical milling. Mater. Sci. Eng., A 216, 178 (1996)CrossRefGoogle Scholar
27.Mangonon, P.L., Thomas, G.: Martensite phases in 304 stainless steel. Metall. Trans. 1, 1577 (1970)CrossRefGoogle Scholar
28.Bowkett, M.W., Keown, S.R., Harries, D.R.: Quench-induced and deformation-induced structures in 2 austenitic stainless-steels. Met. Sci. 16, 499 (1982)CrossRefGoogle Scholar
29.Murr, L.E., Staudhammer, K.P., Hecker, S.S.: Effects of strain state and strain rate on deformation-induced transformation in 304 stainless-steel. 2. Microstructural study. Metall. Trans. A 13, 627 (1982)CrossRefGoogle Scholar
30.Olson, G.B., Cohen, M.: Stress-assisted isothermal martensitic-transformation-application to TRIP steels. Metall. Trans. A 13, 1907 (1982)CrossRefGoogle Scholar
31.Talonen, J., Nenonen, P., Pape, G., Hänninen, H.: Effect of strain rate on the strain-induced γ→α′-martensite transformation and mechanical properties of austenitic stainless steels. Metall. Mater. Trans. A 36, 421 (2005)CrossRefGoogle Scholar
32.Schramm, R.E., Reed, R.P.: Stacking-fault energies of 7 commercial austenitic stainless-steels. Metall. Trans. A 6, 1345 (1975)CrossRefGoogle Scholar
33.Mangonon, P.L., Thomas, G.: Structure and properties of thermal-mechanically treated 304 stainless steel. Metall. Trans. 1, 1587 (1970)CrossRefGoogle Scholar
34.Miller, P.J., Coffey, C.S., Devost, V.F.: Heating in crystalline solids due to rapid deformation. J. Appl. Phys. 59, 913 (1986)CrossRefGoogle Scholar
35.Murty, B.S., Ranganathan, S.: Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43, 101 (1998)CrossRefGoogle Scholar
36.Sort, J., Suriñach, S., Muñoz, J.S., Baró, M.D., Nogués, J., Chouteau, G., Skumryev, V., Hadjipanayis, G.C.: Improving the energy product of hard magnetic materials. Phys. Rev. B 65, 174420 (2002)CrossRefGoogle Scholar
37.Lee, W-S., Lin, C-F.: Impact properties and microstructure evolution of 304L stainless steel. Mater. Sci. Eng., A 308, 124 (2001)CrossRefGoogle Scholar
38.Han, H.N., Lee, C.G., Oh, C-S., Lee, T-H., Kim, S-J.: A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel. Acta Mater. 52, 5203 (2004)CrossRefGoogle Scholar
39.Dieter, G.E.: Mechanical Metallurgy(McGraw-Hill London 1988)Google Scholar