Hostname: page-component-5f745c7db-tvc9f Total loading time: 0 Render date: 2025-01-06T12:58:57.310Z Has data issue: true hasContentIssue false

Copper(I) Halide Nanoparticle-dispersed Glasses Prepared by Copper Staining

Published online by Cambridge University Press:  03 March 2011

Kohei Kadono*
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
Tatsuya Suetsugu
Affiliation:
Isuzu Glass Co., Ltd., Minami-Tsumori, Nishinari, Osaka 557-0063, Japan
Takeshi Ohtani
Affiliation:
Isuzu Glass Co., Ltd., Minami-Tsumori, Nishinari, Osaka 557-0063, Japan
Toshihiko Einishi
Affiliation:
Isuzu Glass Co., Ltd., Minami-Tsumori, Nishinari, Osaka 557-0063, Japan
Takashi Tarumi
Affiliation:
Isuzu Glass Co., Ltd., Minami-Tsumori, Nishinari, Osaka 557-0063, Japan
Tetsuo Yazawa
Affiliation:
University of Hyogo, Himeji 671-2201, Japan
*
a) Address correspondence to this author. e-mail: kadono-k@aist.go.jp
Get access

Abstract

Copper(I) chloride and bromide nanoparticle-dispersed glasses were prepared by means of a conventional copper staining. The staining was performed by the following process: copper stain was applied on the surfaces of Cl- or Br-ion-containing borosilicate glasses, and the glasses were heat-treated at 510 °C for various times. Typical exciton bands observed in the absorption spectra of the glasses after the heat treatment indicated that CuCl and CuBr particles were formed in the surface region of the glasses. The average sizes of the CuCl and CuBr particles in the glasses heat-treated for 48 h were estimated at 4.8 and 2.7 nm, respectively. The nanoparticles were also characterized by x-ray diffraction and transmission electron microscopy. Depth profiles of Cu and CuBr concentration in the glass heat-treated for 48 h were measured. Copper decreased in concentration monotonously with depth, reaching up to 60 μm, while the CuBr concentration had a maximum at about 25 μm in depth.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ekimov, A.I., Efros, AI.L. and Onuschenko, A.A.: Quantum-size effect in semiconductor microcrystals. Solid State Commun. 56, 921 (1985).CrossRefGoogle Scholar
2Ekimov, A.I., Efros, AI.L., Ivanov, M.G., Onuschenko, A.A. and Shumilov, S.K.: Solid State Commun. 69, 565 (1989).CrossRefGoogle Scholar
3Nasu, H., Kaneko, S., Tsunetomo, K. and Kamiya, K.: Preparation and optical properties of CuCl-doped Na2O–B2O3–SiO2 glasses. J. Ceram. Soc. Jpn. 99, 266 (1991).CrossRefGoogle Scholar
4Nakamura, A., Yamada, H. and Tokizaki, T.: Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses. Phys. Rev. B 40, 8585 (1989).CrossRefGoogle ScholarPubMed
5Nakamura, T.Tokizaki, Akiyama, H. and Kataoka, T.: Quantum-size effects and optical nonlinearity of confined excitons in semiconducting microcrystallites. J. Lumin. 53, 105 (1992).CrossRefGoogle Scholar
6Tokizaki, T., Kataoka, T., Nakamura, A., Sugimoto, S. and Manabe, T.: Large enhancement of third-order optical susceptibility in CuCl quantum dots embedded in glass. Jpn. J. Appl. Phys. Part 2 32, L782 (1993).CrossRefGoogle Scholar
7Kataoka, T., Tokizaki, T. and Nakamura, A.: Mesoscopic enhancement of optical nonlinearity in CuCl quantum dots: giant-oscillator-strength effect on confined excitons. Phys. Rev. B 48, 2815 (1993).CrossRefGoogle ScholarPubMed
8Kondo, Y., Sugimoto, N., Manabe, T., Ito, S., Tokizaki, T. and Nakamura, A.: Preparation and third-order optical nonlinearities of glass films doped with CuCl microcrystallites. Nonlinear Opt. 13, 143 (1995).Google Scholar
9Li, Y., Tanaka, M. and Nakamura, A.: Size-dependent enhancement of nonlinear optical susceptibilities due to confined excitons in CuBr nanocrystals. Phys. Rev. B 57, 9193 (1998).CrossRefGoogle Scholar
10Kondo, Y., Kuroiwa, Y., Sugimoto, N., Manabe, T., Ito, S., Yoko, T. and Nakamura, A.: Ultraviolet irradiation effect on the third-order optical nonlinearity of CuCl-microcrystallite-doped glass. J. Opt. Soc. Am. B 17, 548 (2000).CrossRefGoogle Scholar
11Sasai, J., Tanaka, K. and Hirao, K.: Optical second-order nonlinearity of poled borosilicate glass containing CuCl. J. Appl. Phys. 88, 2200 (2000).CrossRefGoogle Scholar
12Tarumi, T. and Einishi, T.: Japan Patent No. 2518749, U.S. Patent No. 5242869.Google Scholar
13Nogami, M., Zhu, Y.Q. and Tohyama, Y.: Preparation and nonlinear optical-properties of quantum-sized CuCl-doped silica glass by the sol-gel process. J. Am. Ceram. Soc. 74, 238 (1991).CrossRefGoogle Scholar
14Nogami, M., Zhu, Y.Q. and Nagasaka, K.: Preparation and quantumsize effect of CuBr microcrystal doped glasses by the sol-gel process. J. Non-Cryst. Solids 134, 71 (1991).CrossRefGoogle Scholar
15Nogami, M., Tohyama, Y. and Nagasaka, K.: CuCl microcrystals incorporated in the sol-gel derived glasses. Nippon Kagaku Kaishi 1231(1992).Google Scholar
16Suyal, G., Menning, M. and Schmidt, H.: Semiconducting CuClxBr1−x (x = 0–1) nanocrystals in thin films: synthesis and characterization. J. Mater. Chem. 12, 3136 (2002).CrossRefGoogle Scholar
17Suyal, G., Menning, M. and Schmidt, H.: Sol-gel synthesis of cuprous halide nanoparticles in a glassy matrix and their characterization. J. Mater. Chem. 13, 1783 (2003).CrossRefGoogle Scholar
18Tsunetomo, K., Shimizu, R., Kawabuchi, A., Kitayama, H. and Osaka, Y.: CuCl microcrystallite-doped SiO2 glass thin-films prepared by rf-sputtering. Jpn. J. Appl. Phys. 2 30 L764 (1991).CrossRefGoogle Scholar
19Takami, S., Egashira, Y., Honma, I. and Komiyama, H.: Preparation of CuCl microcrystals-doped SiO2 glass by co-sputtering method. Appl. Phys. Lett. 68, 1020 (1996).CrossRefGoogle Scholar
20Nasu, H., Yamamoto, T. and Iwano, T.: Quantum-size effect of CuCl microcrystals-doped SiO2 glass thin films. J. Ceram. Soc. Jpn. 106, 1037 (1998).CrossRefGoogle Scholar
21Nasu, H., Iwatani, H., Iwano, T., Hashimoto, T. and Kamiya, K.: The influence of matrix on quantum size confinement of semiconductor microcrystals doped in glass thin films prepared by rf-sputtering. Jpn. J. Appl. Phys. 42, 270 (2003).CrossRefGoogle Scholar
22Fukumi, K., Chayahara, A., Kitamura, N., Akai, T., Hayakawa, J., Fujii, K. and Satou, M.: J. Non-Cryst. Solids 178, 155 (1994).CrossRefGoogle Scholar
23Fukumi, K., Chayahara, A., Kageyama, H., Kadono, K., Akai, T., Kitamura, N., Mizoguchi, H., Horino, Y., Makihara, M., Fujii, K. and Hayakawa, J.: Formation process of CuCl nanoparticles in silica glass by ion implantation. J. Non-Cryst. Solids 259, 93 (1999).CrossRefGoogle Scholar
24Fukumi, K., Chayahara, A., Kinomura, A., Kageyama, H., Kadono, K., Kitamura, N., Nishii, J. and Horino, Y.: X-ray absorption fine structure study on the formation of Cu–Br bonds in (Br plus Cu) ion-implanted silica glass. J. Mater. Res. 18, 885 (2003).CrossRefGoogle Scholar
25Fukumi, K., Chayahara, A., Kageyama, H., Kinomura, A., Mokuno, Y., Kitamura, N., Kadono, K., Horino, Y. and Nishii, J.: Sequential implantation of halogen and copper ions in silica glass. Nucl. Instrum. Methods B 206, 353 (2003).CrossRefGoogle Scholar
26Takahiro, K., Kawatsura, K., Nagata, S., Yamamoto, S., Naramoto, H., Sasase, M. and Ito, Y.: Formation of CuCl and AgCl nanoclusters by sequential implantation. Nucl. Instrum. Methods B 206, 639 (2003).CrossRefGoogle Scholar
27Kadono, K., Yazawa, T., Einishi, T., Yoshioka, S., and Tarumi, T.: Formation of copper(I) halide nanoparticles on the glass surfaces by ion-exchange method—dependence on the glass composition, in Proceedings of the 16th International Japan–Korea Seminar in Ceramics, Okayama, Japan, 1999. p. 158.Google Scholar
28Weyl, W.A. in Coloured Glasses, 2nd ed. (Dawson’s of Pall Mall, London, 1959); pp. 409−419, 433−435.Google Scholar
29Gotoh, Y. In Glass Handbook, 2nd ed., edited by Sakka, S., Sakaino, T., and Takahashi, K. (Asakura Shoten, Tokyo, Japan, 1975), p. 167.Google Scholar
30Sakata, S. and Ebata, Y.: Staining of glass surface by heat treatment. II. On the colouration (ruby) of borosilicate glass by means of copper staining. Osaka Kogyo-gijutsu-shikensho Kihou 6, 216 (1955).Google Scholar
31Sakka, S., Kamiya, K. and Kato, K.: Incorporation of copper into glass by the Cu–Na ion exchange. J. Non-Cryst. Solids 52, 77 (1982).CrossRefGoogle Scholar
32Yoko, T., Nishiwaki, T., Kamiya, K. and Sakka, S.: Copper ↔ alkali ion exchange of alkali aluminosilicate glasses in copper-containing molten salt: I. Monovalent copper salt, CuCl. J. Am. Ceram. Soc. 74, 1104 (1991).CrossRefGoogle Scholar
33Yoko, T., Nishiwaki, T., Kamiya, K. and Sakka, S.: Copper ↔ alkali ion exchange of alkali aluminosilicate glasses in copper-containing molten salt: II. Divalent copper salts, CuCl2 and CuSO4. J. Am. Ceram. Soc. 74, 1112 (1991).CrossRefGoogle Scholar
34Lee, J., Yano, T., Shibata, S. and Yamane, M.: Structure and properties of ion-exchanged Na2O−Cu2O−Al2O3−SiO2 glass system. J. Non-Cryst. Solids 222, 120 (1997).Google Scholar
35Lawn, B.R.: The thermal expansion of silver iodide and the cuprous halides. Acta Crystallogr. 17, 1341 (1964).CrossRefGoogle Scholar