Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T17:58:20.407Z Has data issue: false hasContentIssue false

Crystallization behavior of Li1–5x Ta1+xO3 glasses synthesized from liquid precursors

Published online by Cambridge University Press:  31 January 2011

J.A. Allemann
Affiliation:
Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106
Y. Xia
Affiliation:
Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106
R. E. Morriss
Affiliation:
Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106
A. P. Wilkinson
Affiliation:
Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106
H. Eckert
Affiliation:
Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106
J.S. Speck
Affiliation:
Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106
C. G. Levi
Affiliation:
Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106
S. Anderson
Affiliation:
Department of Chemistry, Westmont College, Santa Barbara, California 93108
Get access

Abstract

The crystallization of amorphous oxides synthesized by pyrolytic decomposition of mixed Li and Ta 2-ethylhexanoates and alkoxides has been investigated. The study was motivated by thermodynamic considerations that, in the light of experience in other systems, suggest the potential for metastable extension of the LiTaO3 homogeneity range. Materials investigated are described by the general stoichiometry Li1–5xTa1+xO3 and include Li2O contents from 0 to 70 mol% (20.18 ≤ x ≤ 0.2). The samples were prepyrolyzed at 400 °C and subsequently crystallized by heat treatments in air at 550–700 °C for 0.1–100 h. The first product of crystallization for compositions from 30 to 65% Li2O is always the LiTaO3 phase. Extensive characterization by x-ray and neutron diffraction, as well as 7Li-NMR spectroscopy, revealed that this phase evolves with a structure and stoichiometry close to equilibrium. For Li+-deficient compositions, excess Ta5+ is rejected to the amorphous constituent during crystallization and eventually gives rise to the evolution of Ta2O5, with the LiTa3O8 phase suppressed in all cases. Similar observations were made for the Li+-rich compositions, but the evolving second phase is the equilibrium Li3TaO4. The absence of solubility extension in LiTaO3, which appears feasible from a thermodynamic viewpoint, is ascribed to the large differences in mobilities of the Li and Ta species in the parent amorphous oxide resulting from pyrolysis.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Abouelleil, M. and Leonberger, F., Am., J.Ceram. Soc. 72, 1322 (1989).Google Scholar
2.Sohler, W., Thin Solid Films 175, 191 (1989).CrossRefGoogle Scholar
3.Matthews, P., Mickelson, A, and Novak, S., J. Appl. Phys. 72, 2562 (1992).CrossRefGoogle Scholar
4.Furukawa, Y., Sato, M., and Minakata, M., J. Appl. Phys. 72, 3250 (1992).Google Scholar
5.Volk, T., Rubinina, N., and Wöhlecke, M., J. Opt. Soc. Am. B11, 1681 (1994).Google Scholar
6.Roth, R., Parker, H., Brower, W., and Waring, J., in Fast Ion Transport in Solids, Solid State Batteries and Devices, edited by van Gool, W. (North Holland Publishing Co., Amsterdam, 1973), p. 217.Google Scholar
7.Kawakami, S., Tsuzuki, A., Sekiya, T., Ishikuro, T., Masuda, M., and Torii, Y., Mater. Res. Bull. 20, 1435 (1985).Google Scholar
8.Abrahams, S. and Bernstein, J., Phys., J.Chem. Solids 28, 1685 (1967).CrossRefGoogle Scholar
9.Raüber, A., in Current Topics in Materials Science (North-Holland, New York, 1978), Vol. 1, p. 481.Google Scholar
10.Schirmer, O., Thiemann, O., and Wöhlecke, M., J. Phys. Chem. Solids 52, 185 (1991).Google Scholar
11.Lerner, P., Legras, C., and Dumas, J., J. Cryst. Growth 3, 231 (1968).Google Scholar
12.Nassau, K. and Lines, M., J. Appl. Phys. 41, 533 (1970).CrossRefGoogle Scholar
13.Iyi, N., Kitamura, K., Izumi, F., Yamamoto, J. K., Hayashi, T., Asano, H., and Kimura, S., J. Solid State Chem. 101, 340 (1992).CrossRefGoogle Scholar
14.Wilkinson, A., Cheetham, A., and Jarman, R., J. Appl. Phys. 74, 3080 (1993).CrossRefGoogle Scholar
15.Zotov, N., Boysen, H., Fredy, F., Metzger, T., and Born, E., J. Phys. Chem. Solids 55, 145 (1995).CrossRefGoogle Scholar
16.Baker, J. C. and Cahn, J. W., in Thermodynamics of Solidification (American Society for Metals, Metals Park, OH, 1971), p. 23.Google Scholar
17.Leung, D. K., Chan, C. J., Rühle, M., and Lange, F. F., J. Am. Ceram. Soc. 74, 2786 (1991).CrossRefGoogle Scholar
18.Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 75, 946 (1992).Google Scholar
19.Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 77, 2069 (1994).CrossRefGoogle Scholar
20.Jayaram, V., DeGraef, M., and Levi, C. G., Acta Metall. Mater. 42, 1829 (1994).Google Scholar
21.Lange, F. F., in Chemical Processing of Advanced Materials, edited by Hench, L. L. and West, J. K. (Wiley, New York, 1992), p. 611.Google Scholar
22.Eichorst, D. J., Payne, D. A., and Wragg, A. N. A., Ceram. Trans. 11, 375 (1990).Google Scholar
23.Derouin, T. A., Lakeman, C., Wu, X. H., Speck, J. S., and Lange, F. F. (1996) unpublished.Google Scholar
24.Barns, R. and Carruthers, J., J. Appl. Phys. 3, 395 (1970).Google Scholar
25.Yamada, T., Niiyeki, N., and Toyoda, H., Jpn. J. Appl. Phys. 7, 298 (1968).CrossRefGoogle Scholar
26.Santoro, A., Roth, R., and Austin, M., Acta Crystallogr. B38, 1049 (1982).Google Scholar
27.Young, R. A., Mackie, P. E., and von Dreele, R. B., J. Appl. Crystallogr. 15, 262 (1977).CrossRefGoogle Scholar
28.Hill, R. J. and Madsen, I. C., J. Appl. Crystallogr. 19, 10 (1986).Google Scholar
29.Peterson, G. E., Bridenbaugh, P. M., and Green, P., J. Chem. Phys. 46, 4009 (1967).Google Scholar
30.Peterson, G. E. and Bridenbaugh, P. M., J. Chem. Phys. 48, 3402 (1968).Google Scholar
31.Halstead, T. K., J. Chem. Phys. 53, 3427 (1970).CrossRefGoogle Scholar
32.Slotfeldt-Ellingsen, D., Magn. Reson. Related Phenomena, Proc. SVII Congr. Ampere (1973), p. 350.Google Scholar
33.Ravez, J., Joo, G. T., Senegas, J., and Hagenmuller, P., Jpn. J. Appl. Phys. 24, 1000 (1985).CrossRefGoogle Scholar
34.Duboudin, F., Dunogues, J., Senegas, J., Puyoo-Castaings, N., and Ravez, J., Mater. Sci. Eng. B5 431 (1990).Google Scholar
35.van Vleck, J. H., Phys. Rev. 74, 1168 (1948).Google Scholar
36.Boettigner, W. J., in Rapidly Solidified Amorphous and Crystalline Alloys, edited by Kear, B. H., Giessen, B. C., and Cohen, M. (Mater. Res. Soc. Symp. Proc. 8, Elsevier Science Publishing, New York, 1982), p. 15.Google Scholar
37.Jayaram, V., Whitney, T., Levi, C. G., and Mehrabian, R., Mater. Sci. Engr. A124, 65 (1990).CrossRefGoogle Scholar
38.Löfvander, J. P. A., Dary, F. C., Ruschewitz, U., and Levi, C. G., Mater. Sci. Engr. (1995).Google Scholar
39.Fourquet, J. L., LeBail, A., and Gillet, P. A., Mater. Res. Bull. 23, 1163 (1988).CrossRefGoogle Scholar
40.Joshi, V. and Mecartney, M. L., J. Mater. Res. 8, 2668 (1993).CrossRefGoogle Scholar
41.Kalonji, G., McKittrick, J., and Hobbs, L. W., in Advances in Ceramics, edited by Claussen, N., Rühle, M., and Heuer, A. H. (American Ceramics Society, Westerville, OH, 1981), p. 816.Google Scholar
42.Topol, L. E., Hengstenberg, D. H., Blander, M., Happe, R. A., Richardson, N. L., and Nelson, I. S., J. Non-Cryst. Solids 12, 377 (1973).Google Scholar
43.Glass, A., Nassau, K., and Negran, T., J. Appl. Phys. 49, 4808 (1978).Google Scholar
44.Phase Diagrams for Ceramists Vol. III, edited by Levin, E. M. and McMurdie, H. F., technical editor Reser, M. K., compiled at the National Bureau of Standards (The American Ceramic Society, Westerville, OH, 1975), Fig. 4277, p. 86.Google Scholar