Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T03:46:31.877Z Has data issue: false hasContentIssue false

Deformation behavior of Zr- and Ni-based bulk glassy alloys

Published online by Cambridge University Press:  03 March 2011

Dmitri V. Louzguine-Luzgin*
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Yuqiao Zeng
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
Albertus Deny Heri Setyawan
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
Nobuyuki Nishiyama
Affiliation:
R&D Institute of Metals and Composites for Future Industries (RIMCOF), Aoba-ku, Sendai 980-8577, Japan
Hidemi Kato
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Junji Saida
Affiliation:
Center for Interdisciplinary Research, Tohoku University, Aramaki, Aoba, Sendai 980-8578, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
*
a) Address all correspondence to this author. e-mail: dml@imr.tohoku.ac.jp
Get access

Abstract

This article presents a comparative study of the deformation-induced structural changes observed within a glassy phase in two different Zr- and Ni-based alloys. Ductile Zr65Al7.5Ni10Pd17.5 bulk glassy alloy, which exhibits dynamic nanocrystallization forming a crystalline cubic phase within shear bands on plastic deformation, is presumed to contain pre-existing nuclei. On the contrary, no obvious dynamic nanocrystallization is observed within the shear bands in the glassy phase of the Ni50Pd30P20 bulk alloy, which, however, contains clear medium-range order zones on the order of 1 nm in size in an as-solidified state. This alloy exhibits nucleation and growth-transformation behavior on heating. At the same time, clear nucleation and growth of the cubic Ni-based phase are observed near the microcrack area in the deformed sample. High energy released at the time of the microcrack propagation caused nanocrystallization and blockage of the crack-tip propagation.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 (1995).Google Scholar
2Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
3Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).Google Scholar
4Kaloshkin, S.D. and Tomilin, I.A.: The crystallization kinetics of amorphous alloys. Thermochim. Acta 280/281, 303 (1996).CrossRefGoogle Scholar
5Louzguine-Luzgin, D.V. and Inoue, A.: Nano-devitrification of glassy alloys. J. Nanosci. Nanotechnol. 5, 999 (2005).Google Scholar
6Chen, H., He, Y., Shiflet, G.J., and Poon, S.J.: Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541 (1994).Google Scholar
7Jiang, W.H., Pinkerton, F.E., and Atzmon, M.: Effect of strain rate on the formation of nanocrystallites in an Al-based amorphous alloy during nanoindentation. J. Appl. Phys. 93, 9287 (2003).Google Scholar
8Jiang, W.H. and Atzmon, M.: The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: A high-resolution transmission-electron-microscopy study. Acta Mater. 51, 4095 (2003).CrossRefGoogle Scholar
9He, Y., Shiflet, G.J., and Poon, S.J.: Ball milling-induced nanocrystal formation in aluminum-based metallic glasses. Acta Metall. Mater. 43, 83 (1995).Google Scholar
10Kim, J.J., Choi, Y., Suresh, S., and Argon, A.S.: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002).Google Scholar
11Saida, J., Setyawan, A.D.H., Kato, H., and Inoue, A.: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 (2005).Google Scholar
12Kato, H., Saida, J., and Inoue, A.: Influence of hydrostatic pressure during casting on as cast structure and mechanical properties in Zr65Al7.5Ni10Cu17.5-xPdx (x = 0, 17.5) alloys Scripta Mater. 51, 1063 (2004).CrossRefGoogle Scholar
13Saida, J., Kato, H., Setyawan, A.D.H., and Inoue, A.: Characterization and properties of nanocrystal-forming Zr-based bulk metallic glasses. Rev. Adv. Mater. Sci. 10, 34 (2005).Google Scholar
14Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).CrossRefGoogle ScholarPubMed
15Perepezko, J.H., Hebert, R.J., and Tong, W.S.: Amorphization and nanostructure synthesis in Al alloys. Intermetallics 10, 1079 (2002).Google Scholar
16Perepezko, J.H.: Nucleation-controlled reactions and metastable structures. Prog. Mater. Sci. 49, 263 (2004).CrossRefGoogle Scholar
17Louzguine, D.V. and Inoue, A.: Investigation of structure and properties of the Al–Y–Ni–Co–Cu metallic glasses. J. Mater. Res. 17, 1014 (2002).Google Scholar
18Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).Google Scholar
19Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).Google Scholar
20Hirotsu, Y., Nieh, T.G., Hirata, A., Ohkubo, T., and Tanaka, N.: Local atomic ordering and nanoscale phase separation in a Pd-Ni-P bulk metallic glass. Phys. Rev. B: Solid State 73, 012205 (2006).Google Scholar
21Zeng, Y., Nishiyama, N., Wada, T., Louzguine-Luzgin, D.V., and Inoue, A.: Ni-rich Ni-Pd-P glassy alloy with high strength and good ductility. Mater. Trans., JIM 47, 175 (2006).CrossRefGoogle Scholar
22Xu, Y. and Wang, W.: Formation of a new high pressure phase: fcc Pd40Ni40P20 solid solution. J. Appl. Phys. 69, 3537 (1991).CrossRefGoogle Scholar
23Gale, W.F. and Totemeier, T.C., eds.: Smithells Metals Reference Book, 8th ed. (Elsevier, Burlington, VT, 2004) pp. 11-433 and 11-450.Google Scholar
24Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Mater. 25, 407 (1977).CrossRefGoogle Scholar
25Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).Google Scholar
26Spaepen, F.: Metallic glasses: Must shear bands be hot? Nat. Mater. 5, 7 (2006).Google Scholar
27Hajlaoui, K., Yavari, A.R., Doisneau, B., LeMoulec, A., Botta, W.J., Vaughan, F.G., Greer, A.L., Inoue, A., Zhang, W., and Kvick, A.: Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scripta Mater. 54, 1829 (2006).Google Scholar
28Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., and Higashi, K.: Effect of strain rate on compressive behaviour of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).CrossRefGoogle Scholar
29Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).CrossRefGoogle Scholar
30Hajlaoui, K., Yavari, A.R., LeMoulec, A., Botta, W.J., Vaughan, F.G., Das, J., Greer, A.L., and Kvick, A.: Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. Non-Cryst. Solids 353, 327 (2007).CrossRefGoogle Scholar
31Kimura, H. and Masumoto, T.: Deformation and fracture of an amorphous Pd-Cu-Si alloy in V-notch bending tests: I. Model mechanics of inhomogeneous plastic flow in non-strain hardening solid. Acta Mater. 28, 1663 (1980).CrossRefGoogle Scholar
32Kimura, H. and Masumoto, T.: Deformation and fracture of an amorphous Pd-Cu-Si alloy in V-notch bending tests: II. Ductile-brittle transition. Acta Metall. 28, 1677 (1980).CrossRefGoogle Scholar
33Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., and Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005).Google Scholar
34Chen, M., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).CrossRefGoogle ScholarPubMed
35Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: Work-hardenable ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).CrossRefGoogle ScholarPubMed
36Eckert, J., Das, J., Kim, K.B., Baier, F., Tang, M.B., Wang, W.H., and Zhang, Z.F.: High strength ductile Cu-base metallic glass. Intermetallics 14, 876 (2006).Google Scholar
37Zhang, Z.F., He, G., Zhang, H., and Eckert, J.: Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites. Scripta Mater. 52, 945 (2005).CrossRefGoogle Scholar
38Jiang, W.H. and Atzmon, M.: Plastic flow of a nanocrystalline/amorphous Al90Fe5Gd5 composite formed by rolling. Intermetallics 14, 962 (2006).Google Scholar
39Louzguine-Luzgin, D.V. and Inoue, A.: Comparative study of the effect of cold rolling on the structure of Al–RE–Ni–Co (RE = rare-earth metals) amorphous and glassy alloys. J. Non-Cryst. Solids 352, 3903 (2006).Google Scholar
40Louzguine, D.V. and Inoue, A.: Crystallization behaviour of Al-based metallic glasses below and above the glass-transition temperature. J. Non-Cryst. Solids 311, 281 (2002).CrossRefGoogle Scholar