Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T00:34:53.508Z Has data issue: false hasContentIssue false

Dielectric and piezoelectric properties of textured Sr0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth

Published online by Cambridge University Press:  31 January 2011

Cihangir Duran
Affiliation:
Materials Science and Engineering Department, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
Susan Trolier-McKinstry
Affiliation:
Materials Science and Engineering Department, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
Gary L. Messing
Affiliation:
Materials Science and Engineering Department, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Fiber textured Sr0.53Ba0.47Nb2O6 ceramics were reactively sintered to ≥95% of the theoretical density from a mixture of SrNb2O6 and BaNb2O6 powders. Texture in 〈001〉 was obtained by templated grain growth on 〈001〉-oriented acicular KSr2Nb5O15 template particles. The most highly textured ceramics had a peak dielectric constant of 23,600 (at Tc = 128 °C), a remanent polarization (Pr) of 20.3 µC/cm2, a saturation polarization (Psat) of 24 µC/cm2 (69–96% of single crystal), and a piezoelectric charge coefficient (d33) of 84 pC/N (76–93% of single crystal). A model, correlating polarization with grain orientation, predicts that Pr increases sharply when a percolating grain network forms to transfer charge between elongated grains.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shoji, K. and Uehara, Y., Jpn. J. Appl. Phys. 30, 2315 (1991).CrossRefGoogle Scholar
2.Nagata, K., Yamamoto, Y., Igarashi, H., and Okazaki, K., Ferroelectrics 38, 853 (1981).CrossRefGoogle Scholar
3.Duran, C., Trolier-McKinstry, S., and Messing, G.L., J. Am. Ceram. Soc. 83, 2203 (2000).CrossRefGoogle Scholar
4.Duran, C., Messing, G.L., and Trolier-McKinstry, S., J. Cryst. Growth (2002, submitted for publication).Google Scholar
5.Seabaugh, M.M., Vaudin, M.D., Cline, J.P., and Messing, G.L., J. Am. Ceram. Soc. 83, 2049 (2000).CrossRefGoogle Scholar
6.Vaudin, M.D., TexturePlus (National Institute of Standards and Technology, Ceramics Division, Gaithersburg, MD, 1999).Google Scholar
7.March, A., Z. Kristallogr. 81, 285 (1932).CrossRefGoogle Scholar
8.Dollase, W.A., J. Appl. Crystallogr. 19, 267 (1986).CrossRefGoogle Scholar
9.Kirillov, V.V. and Isupov, V.A., Ferroelectrics, 5, 3 (1973).CrossRefGoogle Scholar
10.Uchino, K. and Nomura, S., Ferroelectr. Lett. Sect. 44, 55 (1982).CrossRefGoogle Scholar
11.Butcher, S.J. and Thomas, N.W., J. Phys. Chem. Solids, 52, 595 (1991).CrossRefGoogle Scholar
12.Choy, C.L., Leung, W.P., Xi, T.G., Fei, Y., and Shao, C.F., J. Appl. Phys. 71, 170 (1992).CrossRefGoogle Scholar
13.NIH Image, V.1.56, by Rasband, W., National Institutes of Health, Washington, DC.Google Scholar
14.Duran, C., Messing, G.L., and Trolier-McKinstry, S., J. Mater. Sci. (2002).Google Scholar
15.Lee, H-Y. and Freer, R., J. Appl. Phys. 81, 376 (1997).CrossRefGoogle Scholar
16.Lee, H-Y. and Freer, R., J. Mater. Sci. 33, 1703 (1998).CrossRefGoogle Scholar
17.Carruthers, J.R. and Grasso, M., J. Electrochem. Soc.: Solid State Sci. 117, 1426 (1970).CrossRefGoogle Scholar
18.Suvaci, E. and Messing, G.L., J. Am. Ceram. Soc. 83, 2041 (2000).CrossRefGoogle Scholar
19.Cline, T.W., Ph.D. Thesis, Pennsylvania State University (1977).Google Scholar
20.Smolenski, G.A. and Isupov, V.A., Zh. Tekh. Fiz. 24, 1375 (1954).Google Scholar
21.Glass, A.M., J. Appl. Phys. 40, 4699 (1969).CrossRefGoogle Scholar
22.Neurgaonkar, R.R., Ho, W.W., Cory, W.K., Hall, W.F., and Cross, L.E., Ferroelectrics 51, 185 (1984).CrossRefGoogle Scholar
23.Bhanumathi, A., Murty, S.N., Umakantham, K., Mouli, K.C., Padmavathi, G., Rao, K.T., and Syamalamba, V., Ferroelectrics 102, 173 (1990).CrossRefGoogle Scholar
24.Viehland, D., Xu, Z., and Huang, W-H., Philos. Mag. A 71, 205 (1995).CrossRefGoogle Scholar
25.Murty, S.N., Murty, K.V.R., Mouli, K.C., Bhanumathi, A., Raju, S.B., Padmavathi, G., and Murty, K.L., Ferroelectrics 158, 325 (1994).CrossRefGoogle Scholar
26.Umakantham, K., Murty, S.N., Rao, K.S., and Bhanumathi, A., J. Mater. Sci. Lett. 6, 565 (1987).CrossRefGoogle Scholar
27.Neurgaonkar, R.R., Cory, W.K., Oliver, J.R., Sharp, E.J., Wood, G.L., and Salamo, G.J., Ferroelectrics 142, 167 (1993).CrossRefGoogle Scholar
28.Neurgaonkar, R.R., Cory, W.K., and Oliver, J.R., Ferroelectrics 51, 3 (1983).CrossRefGoogle Scholar
29.Guo, R., Bhalla, A.S., Burns, G., and Dacol, F.H., Ferroelectrics 93, 397 (1989).CrossRefGoogle Scholar
30.DiDomenico, M. Jr. and S.H. Wemple, J. App. Phys. 40, 720 (1969).CrossRefGoogle Scholar
31.Neurgaonkar, R.R., Hall, W.F., Oliver, J.R., Ho, W.W., and Cory, W.K., Ferroelectrics 87, 167 (1988).CrossRefGoogle Scholar
32.Deshpande, S.B., Potdar, H.S., Godbole, P.D., and Date, S.K., J. Am. Ceram. Soc. 75, 2581 (1992).CrossRefGoogle Scholar
33.Camlibel, I., J. Appl. Phys. 40, 1690 (1969).CrossRefGoogle Scholar
34.Takenaka, T. and Sakata, K., Jpn. J. Appl. Phys. 19, 31 (1980).CrossRefGoogle Scholar
35.Jimenez, B., Alemany, C., Mendiola, J., and Maurer, E., Ferroelectrics 38, 841 (1981).CrossRefGoogle Scholar
36.Payne, D.A., Ph.D. Thesis, Pennsylvania State University (1973).Google Scholar
37.Takemura, K., Ozgul, M., Bornand, V., Trolier-McKinstry, S., and Randall, C.A., J. Appl. Phys. 88, 7272 (2000).CrossRefGoogle Scholar
38.Neurgaonkar, R.R., Oliver, J.R., Cory, W.K., Cross, L.E., and Viehland, D., Ferroelectrics 160, 265 (1994).CrossRefGoogle Scholar
39.Liu, S.T., Ferroelectrics 22, 709 (1978).CrossRefGoogle Scholar
40.Cline, T.W., Cross, L.E., and Liu, S.T., J. Appl. Phys. 49, 4298 (1978).CrossRefGoogle Scholar