Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T00:09:10.407Z Has data issue: false hasContentIssue false

Domain structure-property relations in lead lanthanum zirconate titanate ceramics

Published online by Cambridge University Press:  31 January 2011

Mehmet A. Akbas
Affiliation:
Department of Engineering Materials, The University of Sheffield, Sheffield, S1 3JD, United Kingdom
Ian M. Reaney
Affiliation:
Department of Engineering Materials, The University of Sheffield, Sheffield, S1 3JD, United Kingdom
William E. Lee
Affiliation:
Department of Engineering Materials, The University of Sheffield, Sheffield, S1 3JD, United Kingdom
Get access

Abstract

The domain structure and dielectric properties as a function of lanthanum concentration and Zr/Ti ratio have been investigated in rhombohedral and tetragonal lead lanthanum zirconate titanate (PLZT) ceramics. Transmission electron microscopy revealed that, with increasing lanthanum concentration and Zr/Ti ratio, the long-range-ordered domains (macrodomains) reduced in width, initially being fine scale (20 nm) striations, but eventually forming a “mottled” contrast (5 nm), characteristic of a relaxor. Relative permittivity measurements as a function of temperature revealed a correlation between broadening of the dielectric maxima and the onset of relaxor-type behavior with the appearance of the striations and mottled (relaxor) contrast, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heartling, G. H. and Land, C. E., J. Am. Ceram. Soc. 54 (1), 1 (1971).CrossRefGoogle Scholar
2.Heartling, G. H., in Electronic Ceramics, Properties, Devices and Applications, edited by Levinson, L. M. (Marcel Dekker, Inc., New York, 1988), pp. 454481.Google Scholar
3.Chu, F., Reaney, I.M., and Setter, N., Ferroelectrics 151, 343 (1994).CrossRefGoogle Scholar
4.Chu, F., Setter, N., and Tagantsev, A. K., J. Appl. Phys. 74 (8), 5129 (1993).CrossRefGoogle Scholar
5.Krumins, A., Shiosaki, T., and Koizumi, S., Jpn. J. Appl. Phys. 33, 4940 (1994).CrossRefGoogle Scholar
6.Dai, X., Xu, Z., and Viehland, D., Philos. Mag. B 70 (1), 3348 (1994).CrossRefGoogle Scholar
7.Chu, F., Reaney, I. M., and Setter, N., Ferroelectrics, 343, 151154 (1994).Google Scholar
8.Randall, C. A., Rossetti, G. A., and Cao, W., Ferroelectrics 150, 163169 (1993).CrossRefGoogle Scholar
9.Dai, X., Giovanni, A., and Viehland, D., J. Appl. Phys. 74 (5), 3399 (1993).CrossRefGoogle Scholar
10.Murata, M. and Wakino, K., Mater. Res. Bull. 11, 323327 (1976).CrossRefGoogle Scholar
11.Akbas, M. A. and Lee, W. E., Brit. Ceram. Trans. 95 (2), 4952 (1996).Google Scholar
12.Akbas, M. A. and Lee, W. E., Brit. Ceram. Proc. 52, 139149 (1994).Google Scholar
13.Akbas, M. A. and Lee, W. E., J. Euro. Ceram. Soc. 15, 5763 (1995).CrossRefGoogle Scholar
14.Akbas, M.A., McCoy, M.A., and Lee, W.E., J. Am. Ceram. Soc. 78 (9), 241243 (1995).CrossRefGoogle Scholar
15. Private communication with C. A. Randall.Google Scholar
16.Randall, C. A., Ph.D. Dissertation, University of Essex, Essex, U.K. (1987).Google Scholar
17.Reaney, I. M., Proc. Electroceramics IV. Aachen 1, 201 (1994).Google Scholar
18.Reaney, I. M., Glazounov, A., Daglish, M., Bell, A., and Setter, N., Proc. Euro. Ceram. Soc., Madrid 2, 115 (1993).Google Scholar
19.Keve, E. T. and Bye, K. L., J. Appl. Phys. 46 (2), 810818 (1975).CrossRefGoogle Scholar
20.Randall, C. A., Barber, D. J., and Whatmore, R. W., J. Mater. Sci. 22, 925931 (1987).CrossRefGoogle Scholar
21.Lee, W. E., Reaney, I. M., and McCoy, M. A., Brit. Ceram. Proc. 55, 199212 (1996).Google Scholar
22.Viehland, D., Jang, S. J., and Cross, L. E., J. Appl. Phys. 69 (9), 6595 (1991).CrossRefGoogle Scholar
23.Li, J., Dai, X., Chow, A., and Viehland, D., J. Mater. Res. 10, 926938 (1995).CrossRefGoogle Scholar
24.Thomas, N. W., J. Phys. Chem. Solids 51 (12), 14191431 (1990).CrossRefGoogle Scholar
25.Butcher, S. J. and Thomas, N. W., J. Phys. Chem. Solids 52 (4), 595601 (1991).CrossRefGoogle Scholar