Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T03:15:53.808Z Has data issue: false hasContentIssue false

Effect of fiber coating on the mechanical behavior of SiC fiber-reinforced titanium aluminide composites

Published online by Cambridge University Press:  31 January 2011

S.M. Jeng
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90024-1595
J-M. Yang
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90024-1595
J.A. Graves
Affiliation:
Rockwell International Science Center, Thousand Oaks, California 91358
Get access

Abstract

The effects of fiber surface coatings on the mechanical behavior and damage mechanisms of SCS-6 fiber-reinforced titanium aluminide matrix composites have been studied. Two different coating layers are used as model material: a brittle TiB2 and a ductile Ag/Ta duplex layer. The role of the coating layer on the interfacial reaction, interfacial properties, and mechanical behavior of the composites was characterized. Results indicate that both TiB2 and Ag/Ta are effective diffusion barriers in preventing fiber/matrix interfacial reactions during composite consolidation. However, the deformation mechanisms and crack propagation characteristics in these two coated composites are quite different. The criteria for selecting an improved interlayer to tailor a strong and tough fiber-reinforced titanium aluminide matrix composite are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wadsworth, J. and Froes, F.H., J. Metals 41 (5), 12 (1989).Google Scholar
2Stephens, J.R., NASA TM 102326, National Aeronautics and Space Administration (1990).Google Scholar
3Ochiai, S. and Murakami, Y., J. Mater. Sci. 14, 831 (1979).CrossRefGoogle Scholar
4Russ, S.M., Metall. Trans. 21A, 15951602 (1990).CrossRefGoogle Scholar
5Marshall, D.B., Shaw, M.C., and Morris, W.L., Acta Metall. 40 (3), 443454 (1992).CrossRefGoogle Scholar
6Yang, J-M. and Jeng, S.M., Scripta Metall. 23 (9), 1159 (1989).Google Scholar
7Jeng, S.M., Shih, C.J., Kai, W., and Yang, J-M., Mater. Sci. Eng. A114, 189 (1989).Google Scholar
8Yang, J-M. and Jeng, S.M., J. Metals 41 (11), 31 (1989).Google Scholar
9Brindley, P. K., Bartolotta, P. A., and Klima, S. K., NASA TM-100956 (1988).Google Scholar
10Martineau, P., Pailler, R., Layaye, M., and Naslain, R., J. Mater. Sci. 12, 2749 (1984).CrossRefGoogle Scholar
11Rhodes, C. G. and Spurling, R. A., in Recent Development of Composites in the United States and Japan, edited by Vinson, J. and Taya, M. (ASTM, Philadelphia, PA, 1985), pp. 585599.CrossRefGoogle Scholar
12Rhodes, C. G., Ghosh, A.K., and Spurling, R.A., Metall. Trans. 18A, 2151 (1987).CrossRefGoogle Scholar
13Smith, P.R. and Froes, F.H., J. Metals 36 (3), 19 (1984).Google Scholar
14Jones, C., Kiely, C. J., and Wang, S. S., J. Mater. Res. 4, 327 (1989).CrossRefGoogle Scholar
15Mikata, Y. and Taya, M., J. Comp. Mat. 19, 554578 (1985).CrossRefGoogle Scholar
16Naik, R. A., Johnson, W. S., and Dicus, D. L., in Titanium Alu-minide Composite, edited by Smith, P.R., Balsone, S.J., and Nicholas, T. (Wright-Patterson Air Force Base, Dayton, OH, 1990), pp. 563573.Google Scholar
17Yang, C.J., Jeng, S.M., and Yang, J-M., Scripta Metall. 24, 469474 (1990).CrossRefGoogle Scholar
18Petitcorps, Y. Le, Pailler, R., and Naslain, R., Comp. Sci. Tech. 35, 207214 (1989).CrossRefGoogle Scholar
19Yang, J-M., Jeng, S. M., and Yang, C.J., Mater. Sci. Eng. A138, 155167 (1991).CrossRefGoogle Scholar
20Jeng, S.M., Yang, C.J., and Yang, J-M., Mater. Sci. Eng. A138, 169180 (1991).CrossRefGoogle Scholar
21Jeng, S.M., Yang, C.J., and Yang, J-M., Mater. Sci. Eng. A138, 181190 (1991).CrossRefGoogle Scholar
22Jeng, S. M., Alassoeur, P., Yang, J-M., and Aksoy, S., Mater. Sci. Eng. A148, 6777 (1991).CrossRefGoogle Scholar
23Wawner, F. E., in Fiber Reinforcements for Composite Materials, edited by Bunsell, A. R. (Elsevier Science Publishers, Amsterdam, 1988), pp. 371425.Google Scholar
24Broek, D., in Elementary Engineering Fracture Mechanics (Martinus Nijhoff Publishers, The Hague, 1982), p. 76.Google Scholar
25Steeds, J.W. and Rhodes, C. G., J. Am. Ceram. Soc. 68 (5), 136138 (1985).CrossRefGoogle Scholar
26Aveston, J., Cooper, G. A., and Kelly, A., Conf. Proc. on The Properties of Fiber Composites, National Physical Laboratory, 1971, IPC Science and Technology, London, pp. 1526.Google Scholar
27Evans, A. G. and McMeeking, R. M., Acta Metall. 34 (12), 24352441 (1986).CrossRefGoogle Scholar
28Budiansky, B. and Amazigo, J. C., J. Mech. Phys. Solids 37 (1), 93109 (1989).CrossRefGoogle Scholar