Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T02:17:35.406Z Has data issue: false hasContentIssue false

The effect of Li-salt additions on the densification of tin oxide

Published online by Cambridge University Press:  31 January 2011

D.W. Yuan
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
S.F. Wang
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
W. Huebner
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
G. Simkovich
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Sintering of pure SnO2 to high densities is difficult due to its high vapor pressure, and hence, additives are typically used to enhance densification. In this study, the effects of two lithium compounds, LiF and LiNO3, on the densification behavior of SnO2 were evaluated. While LiF resulted in only a modest improvement in densification, LiNO3 additions resulted in densities of ≥ 95% theoretical at 1500 °C in air. Thermal, x-ray, and SEM/TEM microstructural analyses indicated no liquid phase formation. From these studies we attribute the enhanced sintering behavior to the ionic-compensation of Li+ as an acceptor dopant, i.e., 3[Li‴sn] = 2[V], which in turn increased the diffusivity of oxygen.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Park, S. J.Hirota, K. and Yamamura, H.Ceram. Int. 10, 115116 (1986).Google Scholar
2Quadir, T. and Ready, D. W.Mater. Sci. Res. 16, 159169 (1984).CrossRefGoogle Scholar
3Matthews, H.E. and Kohnke, E.E.J. Phys. Chem. Solids 29, 653661 (1968).CrossRefGoogle Scholar
4Kimura, T.Inada, S. and Yamaguchi, T.J. Mater. Sci. 24, 220226 (1989).CrossRefGoogle Scholar
5Torvela, H.Uusimaki, A. and Leppavuori, S.Ceram. Int. 15, 9198 (1989).CrossRefGoogle Scholar
6Duvigneaud, P.H. and Reinhard, D.Sci. Ceram. 12, 287292 (1984).Google Scholar
7Rice, R.W.Proc. Br. Ceram. Soc. 12, 99123 (1969).Google Scholar
8Wang, S.F.Huebner, W. and Randall, C.Proc. Int. Conf. Chemistry of Electronic Ceramic Materials, edited by Davies, P. K. and Roth, R.S.NIST Special Publication 804, 1991, pp. 8591.Google Scholar
9Benecke, M. W.Olson, N. E. and Pask, J. A.J. Am. Ceram. Soc. 50 (7), 365368 (1967).CrossRefGoogle Scholar
10Haussonne, J.M.Desgardin, G.Bajolet, P.H. and Raveau, B.J. Am. Ceram. Soc. 66 (11), 801807 (1983).CrossRefGoogle Scholar
11Laurent, M. J.Desgardin, G.Raveau, B.Haussonne, J. M. and Lostec, J.J. Mater. Sci. 23, 44814486 (1988).CrossRefGoogle Scholar
12Evseev, A.M.Pozharskaya, G.V.Nesmeyanov, A.N. and Gerasimov, Y.I., Zh. Neorg. Khim. 4 (10), 21892191 (1959).Google Scholar
13Ownby, P.D. and Jungquist, G.E.J. Am. Ceram. Soc. 55 (9), 433436 (1972).CrossRefGoogle Scholar
14Callister, W.D.Johnson, M.L.Cutler, I.B. and Ure, R.W. Jr. , J. Am. Ceram. Soc. 62 (3-4), 208211 (1979).CrossRefGoogle Scholar
15Shuey, A. T.Semiconducting Ore Minerals (Elsevier Scientific Publishing Co., New York, 1975).Google Scholar
16Solymosi, F.Bozso, F. and Hesz, A.Preparation of Catalysts (Elsevier, Amsterdam, 1976), p. 197.Google Scholar
17Johnson, W.Phys. Rev. 136, A284–A290 (1964).CrossRefGoogle Scholar