Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T03:27:29.607Z Has data issue: false hasContentIssue false

Effect of temperature on metastable phases induced in silicon during nanoindentation

Published online by Cambridge University Press:  31 January 2011

Rajnish K. Singh*
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, New South Wales 2052, Australia
Paul Munroe
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, New South Wales 2052, Australia
Mark Hoffman
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, New South Wales 2052, Australia
*
a)Address all correspondence to this author. e-mail: Rajnish.Singh@gmail.com
Get access

Abstract

Indentations were performed on silicon using a Berkovich indenter at loads up to 12 mN, at temperatures from 20 to 135 °C. Transmission electron microscopy revealed crystalline silicon phases in the residual indentation imprint at and above 35 °C. Also, the first reconfirmation of the occurrence of Si-VIII during unloading was observed at temperatures of 100 and 125 °C. Interestingly, at 125 °C a cavity was also observed, and an unidentifiable phase was observed at 135 °C. The observations show the strong effect of temperature on pressure-induced phase transformation in silicon.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hu, J.Z., Merkle, L.D., Menoni, C.S., Spain, I.L.: Crystal data for high-pressure phases of silicon. Phys. Rev. B: Condens. Matter 34, 4679 1986CrossRefGoogle ScholarPubMed
2Piltz, R.O., Maclean, J.R., Clark, S.J., Ackland, G.J., Hatton, P.D., Crain, J.: Structure and properties of silicon XII: A complex tetrahedrally bonded phase. Phys. Rev. B: Condens. Matter 52, 4072 1995CrossRefGoogle ScholarPubMed
3Crain, J., Ackland, G.J., Maclean, J.R., Piltz, R.O., Hatton, P.D., Pawley, G.S.: Reversible pressure-induced structural transitions between metastable phases of silicon. Phys. Rev. B: Condens. Matter 50, 13043 1994CrossRefGoogle ScholarPubMed
4Domnich, V., Gogotsi, Y.: Phase transformations in silicon under contact loading. Rev. Adv. Mater. Sci. 3, 1 2002Google Scholar
5Ge, D., Domnich, V., Gogotsi, Y.: Thermal stability of metastable silicon phases produced by nanoindentation. J. Appl. Phys. 95, 2725 2004CrossRefGoogle Scholar
6Kailer, A., Gogotsi, Y.G., Nickel, K.G.: Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057 1997CrossRefGoogle Scholar
7Khayyat, M.M., Banini, G.K., Hasko, D.G., Chaudhri, M.M.: Raman microscopy investigations of structural phase transformations in crystalline and amorphous silicon due to indentation with a Vickers diamond at room temperature and at 77 K. J. Phys. D: Appl. Phys. 36, 1300 2003CrossRefGoogle Scholar
8Pharr, G.M.: The anomalous behavior of silicon during nanoindentation in Thin Films: Stresses and Mechanical Properties III, edited by W.D. Nix, J.C. Bravman, E. Arzt, and L.B. Freund (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 301CrossRefGoogle Scholar
9Zarudi, I., Zhang, L.C.: Structure changes in mono-crystalline silicon subjected to indentation: Experimental findings. Tribol. Int. 32, 701 1999CrossRefGoogle Scholar
10Zarudi, I., Zou, J., Zhang, L.C.: Microstructures of phases in indented silicon: A high resolution characterization. Appl. Phys. Lett. 82, 874 2003CrossRefGoogle Scholar
11Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., Munroe, P.: Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16, 1500 2001CrossRefGoogle Scholar
12Ge, D.B., Domnich, V., Gogotsi, Y.: High-resolution transmission-electron-microscopy study of metastable silicon phases produced by nanoindentation. J. Appl. Phys. 93, 2418 2003CrossRefGoogle Scholar
13Singh, R.K., Tilbrook, M.T., Xie, Z.H., Bendavid, A., Martin, P.J., Munroe, P., Hoffman, M.: Contact damage evolution in diamond-like carbon coatings on ductile substrates. J. Mater. Res. 23(1), 27 2008CrossRefGoogle Scholar
14Hainsworth, S.V., Whitehead, A.J., Page, T.F.: The nanoindentation response of silicon and related isostructural materials in Plastic Deformation of Ceramics, edited by R.C. Bradt, C.A. Brooks, and J.L. Routbort (Plenum Press, New York, 1995), p. 173CrossRefGoogle Scholar
15Volinsky, A.A., Gerberich, N., Moody, R., William, W.: Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J. Mater. Res. 19, 2650 2004CrossRefGoogle Scholar
16Eremenko, V.G., Nikitenko, V.I.: Electron microscope investigation of the microplastic deformation mechanisms of silicon by indentation. Phys. Status Solidi A 14, 317 1972CrossRefGoogle Scholar
17Trefilov, V.T., Milman, Y.V.: Sov. Phys. Dok. 8, 1240 1964Google Scholar
18Kaczmarshi, M., Bedoya-Martinez, O.N., Hernandez, E.R.: Phase diagram of silicon from atomistic simulations. Phys. Rev. Lett. 94, 95701 2005CrossRefGoogle Scholar
19Ruffell, S., Bradby, J.E., Williams, J.S.: Annealing kinetics of nanoindentation-induced polycrystalline high pressure phases in crystalline silicon. Appl. Phys. Lett. 90, 131901 2007CrossRefGoogle Scholar
20Street, S.C., Rar, A., Zhou, J.N., Liu, W.J., Barnard, J.A.: Unique structural and mechanical properties of ultrathin Au films grown on dendrimer-mediated substrates. Chem. Mater. 13, 3669 2001CrossRefGoogle Scholar
21Jang, J.I., Lance, M.J., Wen, S., Tsui, T.Y., Pharr, G.M.: Indentation-induced phase transformations in silicon: Influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53, 1759 2005CrossRefGoogle Scholar
22Gridenva, V., Milman, Y.V., Trefilov, V.T.: Phase-transition in diamond-structure crystals during hardness measurements. Phys. Status Solidi A 14, 177 1972CrossRefGoogle Scholar
23Gilman, J.J.: Insulator-metal transitions at microindentations. J. Mater. Res. 7, 535 1992CrossRefGoogle Scholar
24Harbel, B., Bradby, J.E., Swain, M.V., William, J.S., Munroe, P.: Phase transformations induced in relaxed amorphous silicon by indentation at room temperature. Appl. Phys. Lett. 85, 5559 2004Google Scholar
25Kasper, J.S., Richards, S.M.: Crystal structures of new forms of silicon + germanium. Acta Crystallogr. 17, 752 1964CrossRefGoogle Scholar
26Besson, J.J.M., Mokhtari, E.H., Gonzalez, J., Weill, G.: Electrical properties of semimetallic silicon III and semiconductive silicon IV at ambient pressure. Phys. Rev. Lett. 59, 473 1987CrossRefGoogle ScholarPubMed
27Weill, G., Mansot, J.L., Sagon, G., Carlone, C., Besson, J.M.: Characterisation of Si III and Si IV, metastable forms of silicon at ambient pressure. Semicond. Sci. Technol. 4, 280 1989CrossRefGoogle Scholar
28Gaal-Nagy, K., Bauer, A., Schmitt, M., Karch, K., Pavone, P., Strauch, D.: Temperature and dynamical effects on the high-pressure cubic-diamond-tin phase transition in Si and Ge. Phys. Status Solidi B 211, 275 19993.0.CO;2-O>CrossRefGoogle Scholar
29Zhao, X.S., Buehler, F., Sites, J.R., Spain, I.L.: New metastable phases of silicon. Solid State Commun. 59, 678 1986CrossRefGoogle Scholar
30Biswas, R., Martin, R.M., Needs, R.J., Nielsen, O.H.: Stability and electronic properties of complex structures of silicon and carbon under pressure: Density-functional calculations. Phys. Rev. B: Condens. Matter 35, 9559 1987CrossRefGoogle ScholarPubMed
31Wentorf, R.H. Jr., Kasper, J.S.: Two new forms of silicon. Science 139, 338 1963CrossRefGoogle Scholar