Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T03:27:57.240Z Has data issue: false hasContentIssue false

Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich CeyFexCo4−xSb12

Published online by Cambridge University Press:  26 November 2012

Xinfeng Tang
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980–8577, Japan
Lidong Chen
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980–8577, Japan
Takashi Goto
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980–8577, Japan
Toshio Hirai
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980–8577, Japan
Get access

Abstract

Single-phase filled skutterudite compounds, CeyFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.74), were synthesized by a melting method. The effects of Fe content and Ce filling fraction on the thermoelectric properties of CeyFexCo4−xSb12 were investigated. The lattice thermal conductivity of Ce-saturated CeyFexCo4−xSb12, y being at the maximum corresponding to x, decreased with increasing Fe content (x) and reached its minimum at about x = 1.5. When x was 1.5, lattice thermal conductivity decreased with increasing Ce filling fraction till y = 0.3 and then began to increase after reaching the minimum at y = 0.3. Hole concentration and electrical conductivity of Cey Fe1.5Co2.5Sb12 decreased with increasing Ce filling fraction. The Seebeck coefficient increased with increasing Ce filling fraction. The greatest dimensionless thermoelectric figure of merit T value of 1.1 was obtained at 750 K for the composition of Ce0.28Fe1.52Co2.48Sb12.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fleurial, J-P., Caillat, T., and Borshchevsky, A., in Proc. 16th Inter. Conf. on Thermoelectrics, (IEEE, Piscataway, NJ, 1997), p. 1.Google Scholar
2.Ackermann, J. and Wold, A., J. Phys. Chem. Solid 38, 1013 (1977).CrossRefGoogle Scholar
3.Arushanov, E., Fess, K., Kaefer, W., Kloc, Ch., and Bucher, E., Phys. Rev. B 56, 1911 (1997).CrossRefGoogle Scholar
4.Caillat, T., Fleurial, J-P., and Borshchevsky, A., J. Crystal Growth 166, 722 (1996).CrossRefGoogle Scholar
5.Caillat, T., Borshchevsky, A., and Fleurial, J-P., J. Appl. Phys. 80, 4442 (1996).Google Scholar
6.Morelli, D.T., Caillat, T., Fleurial, J-P., Borshchevsky, A., Vandersande, J., Chen, B., and Uher, C., Phys. Rev. B 51, 9622 (1995).CrossRefGoogle Scholar
7.Mandrus, D., Migliori, A., Darling, T.W., Hundley, M.F., Peterson, E.J., and Thompson, J.D., Phys. Rev. B 52, 4926 (1995).CrossRefGoogle Scholar
8.Sharp, J.W., Jones, E.C., Williams, R.K., Martin, P.M., and Sales, B.C., J. Appl. Phys. 78, 1013 (1995).CrossRefGoogle Scholar
9.Borshchevsky, A., Fleurial, J-P., Allevato, C.E., and Caillat, T., in Proc. 13th Inter. Conf. on Thermoelectrics, AIP press No. 316, 3 (1994).Google Scholar
10.Borshchevsky, A., Fleurial, J-P., and Caillat, T., in Proc. 15th Inter. Conf. on Thermoelectrics, (IEEE, Piscataway, NJ, 1996), p. 112.Google Scholar
11.Katsuyama, S., Kanayama, Y., Ito, M., Majima, K., and Nagai, H., in Proc. 17th Inter. Conf. on Thermoelectrics, (IEEE, Piscataway, NJ, 1998), p. 342.Google Scholar
12.Sales, B.C., Mandrus, D., and Williams, R.K., Science 272, 1325 (1996).CrossRefGoogle Scholar
13.Sales, B.C., Mandrus, D., Chakoumakos, B.C., Keppens, V., and Thompson, J.R., Phys. Rev. B 56, 15081 (1997).CrossRefGoogle Scholar
14.Chen, B.X., Xu, J-H., Uher, C., Morelli, D.T., Meisner, G.P., Fleurial, J-P., Caillat, T., and Borshchevsky, A., Phys. Rev. B 55, 1476 (1997).CrossRefGoogle Scholar
15.Tang, X.F., Chen, L.D., Goto, T., and Hirai, T., J. Japan Inst. Metals 63, 1412 (1999).CrossRefGoogle Scholar
16.Morelli, D.T., Meisner, G.P., Chen, B.X., Hu, S.Q., and Uher, C., Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
17.Okamoto, H., J. Phase Equilibria 12, 244 (1991).Google Scholar
18.Nolas, G.S., Cohn, J.L., and Slack, G.A., Phys. Rev. B 58, 164 (1998).CrossRefGoogle Scholar
19.Chakoumakos, B.C., Sales, B.C., Mandrus, D., and Keppens, V., Acta Cryst. B 55, 341 (1999).Google Scholar
20.Sales, B.C., Chakoumakos, B.C., and Mandrus, D., J. Solid State Chem. 146, 528 (1999).CrossRefGoogle Scholar
21.Yang, J.H., Ph.D. Thesis, University of Michigan, Ann Arbor, MI (2000).Google Scholar
22.Nodstrom, L. and Singh, D.J., Phys. Rev. B 53, 1103 (1996).CrossRefGoogle Scholar
23.Chen, L., Goto, T., Li, J., and Hirai, T., Mater. Trans. JIM 37, 1182 (1996).CrossRefGoogle Scholar