Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T03:26:49.688Z Has data issue: false hasContentIssue false

Effects of heat treatment and sintering additives on thermal conductivity and electrical resistivity in fine-grained SiC ceramics

Published online by Cambridge University Press:  31 January 2011

Guo-Dong Zhan
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Mamoru Mitomo
Affiliation:
National Institute for Materials Science, Namiki 1–1, Tsukuba-shi, Ibaraki 305, Japan
Amiya K. Mukherjee
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Get access

Abstract

The effects of heat treatment and sintering additives on the thermal conductivity and electrical resistivity of fine-grained SiC materials were investigated. The thermal conductivity and the electrical resistivity of dense SiC materials were measured at room temperature by a laser flash technique and a current-voltage method, respectively. The results indicated that the thermal conductivity and electrical resistivity of the SiC materials were dependent on the sintering additives and the resultant microstructure. Annealed materials with oxide additives developed microstructures consisting of elongated grains of various α/β–SiC polytypes. In contrast, annealed materials with oxynitride additives had microstructures consisting of fine equiaxed grains entirely of β–SiC phase. For the annealed materials with oxide additives the observed thermal conductivity was over 110 W/mK. For the annealed materials with oxynitride additives the observed value was 47 W/mK. The electrical resistivity of a hot-pressed material with oxide sintering additives decreased after annealing. For annealed materials with oxynitride additives, the electrical resistivity was even lower. High-resolution electron microscopy revealed a thin amorphous phase along the grain boundaries. Energy dispersive x-ray spectroscopy results showed that there was segregation of both Al and O atoms and a very small amount of Y atoms at grain boundaries. The results indicated that the chemistry and structure of the grain boundary has significant influence on thermal and electrical properties in SiC.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Padture, N.P. and Lawn, B.R., J. Am. Ceram. Soc. 77, 2518 (1994).CrossRefGoogle Scholar
2.Padture, N.P., J. Am. Ceram. Soc. 77, 519 (1994).CrossRefGoogle Scholar
3.Zhan, G-D., Mitomo, M., Kim, Y-W., J. Am. Ceram. Soc. 82, 2924 (1999).CrossRefGoogle Scholar
4.Zhan, G-D., Xie, R-J., Mitomo, M., Kim, Y-W., J. Am. Ceram. Soc. 84, (2001).Google Scholar
5.Moore, K. and Trew, R.J., MRS Bull. 22(3), 50 (1997).CrossRefGoogle Scholar
6.Glass, R.C., Henshall, D., Tsvetkov, V.F., and Carter, C.H., Jr., MRS Bull. 22(3), 30 (1997).Google Scholar
7.Larkin, D.J., MRS Bull. 22(3), 36 (1997).CrossRefGoogle Scholar
8.Capano, M.A. and Trew, R.J., MRS Bull. 22(3), 19 (1997).CrossRefGoogle Scholar
9.Takeda, Y., Nakamura, K., Maeda, K., and Matsushita, Y., J. Am. Ceram. Soc. 70, C-266 (1987).CrossRefGoogle Scholar
10.Takeda, Y., Ceram. Bull. 67, 1961 (1988).Google Scholar
11.Ogihara, S., Maeda, K., Takeda, Y., and Nakamura, K., J. Am. Ceram. Soc. 68, C-16 (1985).CrossRefGoogle Scholar
12.Sakai, T. and Aikawa, T., J. Am. Ceram. Soc. 71, C-7 (1988).Google Scholar
13.Kowbel, W., Gao, F., Withers, J.C., and Youngblood, G.E., J. Mater. Syn. And Proc. 4, 195 (1996).Google Scholar
14.Kinoshita, T. and Munekawa, S., Acta. Mater. 45, 2001 (1997).CrossRefGoogle Scholar
15.Liu, D-M. and Lin, B.W., Ceram. Inter. 22, 407 (1996).CrossRefGoogle Scholar
16.Landon, M. and Thevenot, F., J. Europ. Ceram. Soc. 8, 271 (1991).CrossRefGoogle Scholar
17.Zhan, G-D., Mitomo, M., Xie, R-J., Mukherjee, A.K., J. Am. Ceram. Soc. 84, 2448 (2001).CrossRefGoogle Scholar
18.Zhan, G-D., Mitomo, M., Tanaka, H., Kim, Y.W., J. Am. Ceram. Soc. 83, 1369 (2000).CrossRefGoogle Scholar
19.Zhan, G-D., Ikuhara, Y., Mitomo, M., Xie, R-J., Sakuma, T., Mukherjee, A.K., J. Am. Ceram. Soc. 85, 430 (2002).Google Scholar
20.Kim, Y-W., Mitomo, M., Zhan, G-D., J. Mater. Res. 14, 4291 (1999).CrossRefGoogle Scholar
21.Loehman, R.E., J. Am. Ceram. Soc. 62, 491 (1979).Google Scholar
22.Sakka, S., J. Non-Cryst. Solids 181, 215 (1995).CrossRefGoogle Scholar
23.Mitomo, M., Hirotsuru, H., Suematsu, H., and Nishimura, T., J. Am. Ceram. Soc. 78, 211 (1995).Google Scholar
24.Tanaka, H. and Iyi, N., J. Ceram. Soc. Jpn. 101, 1313 (1993).Google Scholar
25.Ruska, J., Gauckler, L.J., Lorenz, J.L., and Rexer, H.U., J. Mater. Sci. 14, 2013 (1979).CrossRefGoogle Scholar
26.Y-W. Kim and M. Mitomo, J. Am. Ceram. Soc. 82, 2731 (1999).CrossRefGoogle Scholar
27.http://www.ceramics.nist.gov/srd/summary/scdscs.htm (2001).Google Scholar
28.http://www.ceradyne.com/dtsic.htm (2001).Google Scholar
29.http://www.cvdmaterials.com/sicprop1.htm (2001).Google Scholar
30.Collins, A.K., Pickering, M.A., and Taylor, R.L., J. App. Phys. 68, (1990).CrossRefGoogle Scholar
31.Seo, W.S., Pai, C.H., Koumoto, K., and Yanagida, H., Solid State Phenomena 25&26, 133 (1992).CrossRefGoogle Scholar
32.Jun, H-W., Lee, H-W., Kim, G-H., Song, H-S., Kim, B-H., Ceram. Eng. Sci. Proc. 18, 487 (1997).CrossRefGoogle Scholar
33.Nader, M., Aldinger, F., and Hoffmann, M.J., J. Mater. Sci. 34, 1197 (1999).Google Scholar
34.Zhan, G-D., Mitomo, M., Kim, Y-W., Xie, R-J., Mukherjee, A.K., J. Mater. Res. 16, 2189 (2001).Google Scholar
35.Vodakov, Y.A., Lomakina, G.A., Mokhov, E.N., Oding, V.G., and Padovanova, E.I., Sov. Phys. Solid State 20, 258 (1978).Google Scholar