Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T18:27:32.819Z Has data issue: false hasContentIssue false

Electrical and optical transport in undoped and indium-doped zinc oxide films

Published online by Cambridge University Press:  31 January 2011

S. Major
Affiliation:
Thin Film-Solid State Technology Laboratory, Physics Department, Indian Institute of Technology, Delhi, New Delhi-110016, India
A. Banerjee
Affiliation:
Thin Film-Solid State Technology Laboratory, Physics Department, Indian Institute of Technology, Delhi, New Delhi-110016, India
K.L. Chopra
Affiliation:
Thin Film-Solid State Technology Laboratory, Physics Department, Indian Institute of Technology, Delhi, New Delhi-110016, India
Get access

Abstract

Electrical conduction in undoped and indium-doped ZnO films in as-deposited, vacuum-annealed and oxygen-annealed states has been studied. The as-deposited and oxygen-annealed films contain a large density (≥ 1017 m−2) of trap states due to chemisorbed oxygen at the grain boundaries. The role of these trap states has been analyzed in terms of the grain boundary carrier trapping model. The vacuum-annealed films are free of chemisorbed oxygen, and the conduction in these films is controlled by scattering due to ionized impurities and grain boundary barriers. In the case of undoped ZnO films, intrinsic trap states at the grain boundaries also play a significant role. The optical behavior of all films in the UV and visible regions is dielectric-like and the optical bandgap shows a dependence on free carrier concentration that is controlled by a bandgap narrowing effect due to electron-electron and electron-impurity interactions as well as the Moss-Burstein effect of bandgap widening. In the IR region the optical behavior is metal-like due to free-electron effects and follows the Drude model.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hirschwald, W. in cooperation with Bonascwicz, P., Ernst, L., Grade, M., Hofmann, D., Krebs, S., Littbarski, R., Neumann, G., Grunze, M., Kolb, D., and Schulz, H. J., Current Topics Mater. Sci. 7, 143 (1981).Google Scholar
2Chopra, K. L., Major, S., and Pandya, D. K., Thin Solid Films 102, 1 (1983).CrossRefGoogle Scholar
3Major, S., Banerjee, A., and Chopra, K. L., Thin Solid Films 122, 31 (1984).CrossRefGoogle Scholar
4Major, S., Banerjee, A., and Chopra, K. L., Thin Solid Films 125, 179 (1985).CrossRefGoogle Scholar
5Minami, T., Nanto, H., and Takata, S., Jpn. J. Appl. Phys. 23, L280 (1984).CrossRefGoogle Scholar
6Major, S., Banerjee, A., and Chopra, K. L., Thin Solid Films 108, 333 (1983).Google Scholar
7Denton, R. E., Campbell, R. D., and Tomlin, S. G., J. Phys. D 5, 852 (1972).CrossRefGoogle Scholar
8Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures (Wiley, New York, 1974), Chap. 9.Google Scholar
9Orton, J. and Powel, M. J., Rep. Prog. Phys. 43, 1265 (1980).CrossRefGoogle Scholar
10Mundrah, M. M., Saraswat, K. C., and Kamins, T. I., IEEE Trans. Electron Dev. ED-28, 1163 (1981).Google Scholar
11Roth, A. P. and Williams, D. F., J. Appl. Phys. 52, 6685 (1981).Google Scholar
12Tarng, M. L., J. Appl. Phys. 49, 4069 (1978).CrossRefGoogle Scholar
13Johnson, V. A. and Lark-Horovitz, K., Phys. Rev. 71, 374 (1947).Google Scholar
14Seto, J. Y. W., J. Appl. Phys. 46, 5247 (1975).Google Scholar
15Orton, J. W., Goldsmith, J., Chapman, J. A., and Powel, M. J., J. Appl. Phys. 53, 1602 (1982).CrossRefGoogle Scholar
16Major, S., Banerjee, A., Chopra, K. L., and Nagpal, K. C., Thin Solid Films (to be published).Google Scholar
17Tansley, T. L., Neely, D. F., and Foley, C. P., Thin Solid Films 117, 19 (1984).CrossRefGoogle Scholar
18Bond, W. L., J. Appl. Phys. 36, 1674 (1965).CrossRefGoogle Scholar
19Roth, A. P., Webb, J. B., and Williams, D. F., Phys. Rev. B 25, 7836 (1982).Google Scholar
20Hamberg, I., Granqvist, C. G., Berggren, K. F., Sernelius, B. E., and Engstrom, L., Phys. Rev. B 30, 3240 (1984).Google Scholar
21Burstein, E., Phys. Rev. 93, 632 (1954); T. S. Moss, Proc. R. Soc. London, Ser. B 67, 775 (1954).Google Scholar
22Mahan, G. D., J. Appl. Phys. 51, 2634 (1980).Google Scholar
23Berggren, K. F. and Sernelius, B. E., Phys. Rev. B 24, 1971 (1981).Google Scholar
24Schmid, P. E., Phys. Rev. B 23, 5531 (1981).CrossRefGoogle Scholar
25Dietz, R. E., Hopfleld, J. J., and Thomas, D. G., J. Appl. Phys. 32, 2282 (1961).Google Scholar
26Bogner, G., J. Phys. Chem. Solids 19, 235 (1961).Google Scholar